• Title/Summary/Keyword: the dynamic model

Search Result 11,208, Processing Time 0.036 seconds

The design T-S fuzzy model-based target tracking systems (T-S 퍼지모델 기반 표적추적 시스템)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

Analysis of a Roller Guide Container Stacking System Applicable to the Mobile Harbor (모바일 하버 컨테이너 적재 유도 시스템에서 롤러 가이드 적용 및 해석)

  • Oh, Tae-Oh;Park, Jung-Hong;Kim, Kwang-Hoon;Son, Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.620-626
    • /
    • 2011
  • The purpose of this study is to evaluate a simulation model of a stacking guidance system (SGS) with a roller guide applicable to the mobile harbor. The study used a small-scale model (1/20) made of wood with rollers in order to compare the dynamic analysis with experiment results. The law of similarity was applied for the validation of the scaled model. In order to construct a more realistic simulation model, the damping coefficient of the dynamic model was adjusted to 0.5 Ns/mm for the wood-to-wood contact condition based on the experimental results. Using this validated model, dynamic simulations were also carried out for containers of 20, 30, and 40 tons. The results showed that the reaction force of the roller guide was increased from 74.7 kN to 91.2 kN as the weight of container increased. For the design of a roller guide for SGS, the results obtained in this study can be used to reduce the reaction force by employing a rubber roller or a highly damped rotational joint.

Flexible Multibody Dynamic Analysis of Missile Behavior for the Initial Launching Stage (유도탄의 유연성을 고려한 발사초기 동역학 해석)

  • 안진수;임범수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.92-98
    • /
    • 1999
  • Dynamic behavior of missile which is fired in canister is analyzed by flexible multibody dynamics. The bending elasticity of missile is very important in case that missile is fired in the inclined launcher. In this paper, the force element model for the missile launching stage and the finite element model of missile are developed. The FEA model of missile is condensed into five lumped mass element model and the consistence between FE model and lumped mass model of missile is verified by modal analysis. As a result of analysis, sabot reaction force and pitch rate of missile for the variation of gap size and force element are obtained.

  • PDF

Experiments on influence of foundation mass on dynamic characteristic of structures

  • Pham, Trung D.;Hoang, Hoa P.;Nguyen, Phuoc T.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • Recently, a new foundation model called "Dynamic foundation model" was proposed for the dynamic analysis of structures on the foundation. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameter of foundation during vibration. However, the relationship of foundation property parameters with the experimental parameter of the influence of foundation mass also has not been established in previous research. Hence, the purpose of the paper presents a simple experimental model in order to establish relationships between foundation properties such as stiffness, depth of foundation and experimental parameter of the influence of foundation mass. The simple experimental model is described by a steel plate connected with solid rubber layer as a single degree of freedom system including an elastic spring connected with lumped mass. Based on natural circular frequencies of the experimental models determined from FFT analysis plots of the time history of acceleration data, the experimental parameter of the influence of foundation mass is obtained and the above relationships are also discussed.

Economic Damage Assessment of Coastal Development using Dynamic Bioeconomic Model

  • Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.741-751
    • /
    • 2012
  • This article analyzes the interdependency between nonrenewable marine sand resources and renewable fishery resources by the developed dynamic bioeconomic model. The developed bioeconomic model is applied to a case study of efficient sustainable management for marine sand mining, which adversely affects a valuable blue crab fishery and its habitat in Korea. The socially-efficient extraction plan for marine sand and the time-variant environmental external costs to society in terms of diminished harvest rate of blue crab are determined. To take into account long-term effects from destroyed fishery habitat, a Beverton-Holt age structure model is integrated into the bioeconomic model. The illustrative results reveal that the efficient sand extraction plan is dynamically constrained by the stock size of the blue crab fishery over time. Thus, the dynamic environmental external cost is more realistic resource policy option than the classical fixed external cost for determining socially optimal extraction plans. Additionally, the economic value of bottom habitat, which supports the on- and off-site commercial blue crab fishery is estimated. The empirical results are interpreted with emphasis on guidelines for management policy for marine sand mining.

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

A dynamic Bayesian approach for probability of default and stress test

  • Kim, Taeyoung;Park, Yousung
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.579-588
    • /
    • 2020
  • Obligor defaults are cross-sectionally correlated as obligors share common economic conditions; in addition obligors are longitudinally correlated so that an economic shock like the IMF crisis in 1998 lasts for a period of time. A longitudinal correlation should be used to construct statistical scenarios of stress test with which we replace a type of artificial scenario that the banks have used. We propose a Bayesian model to accommodate such correlation structures. Using 402 obligors to a domestic bank in Korea, our model with a dynamic correlation is compared to a Bayesian model with a stationary longitudinal correlation and the classical logistic regression model. Our model generates statistical financial statement under a stress situation on individual obligor basis so that the genearted financial statement produces a similar distribution of credit grades to when the IMF crisis occurred and complies with Basel IV (Basel Committee on Banking Supervision, 2017) requirement that the credit grades under a stress situation are not sensitive to the business cycle.

Development of Wheel Loader V-Pattern Operator Model for Virtual Evaluation of Working Performance (휠로더 가상 성능평가를 위한 V상차 작업 운전자 모델)

  • Oh, Kwangseok;Kim, Hakgu;Ko, Kyungeun;Kim, Panyoung;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1201-1206
    • /
    • 2014
  • This paper presents the development of an event-based operator model of a wheel loader for virtual V-pattern working. The objective of this study is to analyze the performance and dynamic behavior of the wheel loader for a typical V-pattern. The proposed typical V-pattern working is divided into four stages. The developed operator model is based on eight events, and the operator's inputs are occurred sequentially by event. A 3D dynamic simulation model of the wheel loader is developed and used to analyze the dynamic behavior during working, and the simulation results are compared with the experimental data of V-pattern working. The proposed 3D dynamic simulation model and operator model are constructed using MATLAB/Simulink. The proposed operator model for V-pattern working is expected to enable evaluation of the working performance and dynamic behavior of the wheel loader.