• Title/Summary/Keyword: the double ray

Search Result 484, Processing Time 0.032 seconds

Growth of $Cd_{1-x}Zn_xS $ Thin films Using Hot Wall Epitaxy Method and Their Photoconductive Characteristics (HWE에 의한 $Cd_{1-x}Zn_xS $박막의 성장과 광전도 특성)

  • 홍광준;유상하
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.53-63
    • /
    • 1998
  • The Cd1-xZnxS thin films were grown on the Si(100) wafers by a hot wall epitaxy method (HWE). the source and substrate temperature are 600℃ and 440℃, respectively. The crystalline structure of epilayers was investigated by double crystal X-ray diffraction (DCXD). Hall effect on the sample was measured by the van der Pauw method and the carrier density and mobility dependence of Hall characteristics on temperature was also studied. In order to explore the applicability as a photoconductive cell, we measured the sensitivity (γ), the ratio of photocurrent to darkcurrent (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time. The results indicated that the best photoconductive characteristic were observed in the Cd0.53Zn0.47S samples annealed in Cu vapor comparing with in Cd, Se, air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of 1.65 × 107, the MAPD of 338mW, and the rise and decay time of 9.7 ms and 9.3 ms, respectively.

  • PDF

Growth and Optoelectric Characterization of CdGa$_2$Se$_4$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한 CdGa$_2$Se$_4$ 단결정 박막 성장과 광전기적 특성)

  • 홍광준;박창선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

Growth and Characterization of $CulnSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CulnSe_2$ 박막 성장과 특성)

  • 홍광준;이상열;박진성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.445-454
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect fby van der Pauw method are 9.62x10$^{16}$ cm$^{-3}$ , 296$\textrm{cm}^2$/V.s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film we have found that he values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 7meV and 5.9meV, respectivity. by Haynes rule, an activation energy of impurity was 50 meV.

  • PDF

Growth of HgCdTe thin film by the hot-wall epitaxy method (Hot-wall epitaxy 방법에 의한 HgCdTe 박막 성장)

  • 최규상;정태수
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.406-410
    • /
    • 2000
  • Using the hot-wall epitaxy method, we grew a $Hg_{1-x}Cd_xTe$ (MCT) thin film in-situ after growing (111) CdTe of 9 $mu \textrm{m}$ as a buffer layer. The value of FWHM of double crystal x-ray diffraction rocking curve was 125 arcsec and the surface morphology was clean with a small roughness of 10 nm. From measuring the photocurrent of the grown MCT thin film, the maximum peak wavelength and the cut-off wavelength were 1.1050 $\mu\textrm{m}$ (1.1220 eV) and 1.2632 $\mu\textrm{m}$ (0.9815 eV), respectively. This peak wavelength corresponds to the peak of the band gap due to the intrinsic transition of the photoconductor. Therefore, the MCT thin film could be used as the photoconducting detector sensing a near-IR wavelength band from 1.0 to 1.6 $\mu\textrm{m}$.

  • PDF

Chemical Modification of Japanese Cedar with 2-Methacryloyloxyethyl Isocyanate (2-메타크릴로일옥시에틸 이소시아네이트에 의한 삼나무재의 화학처리)

  • Han, Gyu-Seong;Setoyama, Kouichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • This study was carried out to introduce functional groups onto wood by reacting with 2-methacryloyloxyethyl isocyanate(MOI). The effects of the catalyst and the reaction conditions(temperature and time) on the treatment were investigated. The evidence of bonding between wood and MOI were examined by infrared(IR) spectroscopy. The change in surface characteristics of MOI treated wood was examined by water contact angle measurement and X-ray photoelectron spectroscopy(XPS). Wood reacted quickly with MOI in the presence of di-n-butiltin dilaurate catalyst. Especially, the increase in weight percent gain(WPG) with increasing in reaction time was remarkable at the reaction temperature of over $50^{\circ}C$. The IR spectrum of wood reacted with MOI showed a strong urethane absorption(1715 $cm^{-1}$) but no isocyanate(2235 $cm^{-1}$) absorption. It also showed a sharp olefinic C=C double bond absorption at 1635 $cm^{-1}$. This means that an introduced methacrylate group becomes the starting point of further graft copolymerization with another vinyl monomers. The wood modified with MOI showed a gradual increase in contact angle with increasing in WPG, which means that the hydrophilic wood surface become quite hydrophobic. Also, it was cleared that most parts of the wood surface were modified with MOI by XPS analysis.

  • PDF

Epitaxial Growth of $CeO_2\;and\;Y_2O_3$ Buffer-Layer Films on Textured Ni metal substrate using RF Magnetron Sputtering (이축정렬된 Ni 금속모재에 RF 마그네트론 스퍼터링에 의해 증착된 $CeO_2$$Y_2O_3$ 완충층 박막 특성)

  • Oh, Y.J.;Ra, J.S.;Lee, E.G.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.120-129
    • /
    • 2006
  • We comparatively studied the epitaxial growth conditions of $CeO_2$ and $Y_2O_3$ thin buffers on textured Ni tapes using rf magnetron sputtering and investigated the feasibility of getting a single mixture layer or sequential layers of $CeO_2$ and $Y_2O_3$ for more simplified buffer architecture. All the buffer layers were first deposited using the reducing gas of $Ar/4%H_2$ and subsequently the reactive gas mixture of Ar and $O_2$, The crystalline quality and biaxial alignment of the films were investigated using X-ray diffraction techniques (${\Theta}-2{\Theta},\;{\phi}\;and\;{\omega}\;scans$, pole figures). The $CeO_2$ single layer exhibited well developed (200) epitaxial growth at the condition of $10%\;O_2$ below an $450^{\circ}C$, but the epitaxial property was decreased with increasing the layer thickness. $Y_2O_3$ seldom showed optimum condition for (400) epitaxial growth. The sequential architecture of $CeO_2/Y_2O_3/CeO_2$ having good epitaxial property was achieved by sputtering at a temperature of $700^{\circ}C$ on the initial $CeO_2$ bottom layer sputtered at $400^{\circ}C$. Cracking of the sputtered buffer layers was seldom observed except the double layer structure of $CeO_2/Y_2O_3$.

  • PDF

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Properties of Photocurrent and Growth of $CuInSe_2$ single crystal thin film ($CuInSe_2$ 단결정 박막 성장과 광전류 특성)

  • S.H. You;K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.83-83
    • /
    • 2003
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are 9.62$\times$10$^{16}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10 K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 7 meV and 5.9 meV, respectivity. By Haynes rule, an activation energy of impurity was 59 meV.

  • PDF

Homoepitaxial Growth on GaN Substrate Grown by HVPE (HVPE법에 의해 성장된 GaN 기판의 Homoepitaxial 성장)

  • Kim, Chong-Don;Kim, Young-Soo;Ko, Jung-Eun;Kwon, So-Young;Lee, Sung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.14-14
    • /
    • 2006
  • Homoepitaxial growth of GaN on n-type GaN substrates was carried out by hydride vapor phase epitaxy (HVPE) method. This enables us to reduce or to eliminate the bowing of the GaN substrate caused by thermal mismatch. As a result, the two opposite crystal surfaces have been found to possess low dislocation density. The surface polarity of the homoepitaxially grown GaN was confirmed by both etching of the surface and conversion beam electron diffraction(CBED). The surface morphology and the photoluminescencemeasurement indicated that the surface properties of N-polar face of the homoepitaxlally grown GaN are quite different from the initial N-polar face of the heteroepitaxially grown GaN substrate Also, both surfaces of the GaN substrate were characterized by room temperature Double crystal X-ray diffraction (DCXRD) and photoluminescence measurement.

  • PDF