• Title/Summary/Keyword: the distribution of water flow

Search Result 1,191, Processing Time 0.03 seconds

NUMERICAL STUDY ON THE MIXER TYPE OF UREA-SCR SYSTEM FOR FLOW MIXING IMPROVEMENT (Urea-SCR 시스템의 유동혼합 개선을 위한 혼합기 형상에 관한 수치적 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.;Kim, W.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.368-375
    • /
    • 2010
  • To alleviate NOx emission, a variety of approaches has been applied. In marine diesels, the application of SCR systems has been considered an effective exhaust aftertreatment method for NOx emission control. Most current SCR systems use a various catalyst for the reaction of ammonia with NOx to form nitrogen and water. In theory, it is possible to achieve 100% NOx if the NH3-to-NOx ratio is 1:1. However, the reaction has a limited non-uniformity of the exhaust gas flow and ammonia concentration distribution. Therefore it is necessary to investigate the optimum flow conditions. In order to achieve uniform flow at monolith front face, we are equipped with a various mixed device. In this paper, it is presented that the mixed devices play an important role improvement of flow patterns and particle distributions of NH3 by numerical simulation.

  • PDF

Determination of Important Parameter Control Term for Paldang Lake Water Quality Management using Load Duration Curves (오염부하지속곡선을 이용한 팔당호 수질항목별 중점관리 시점 선정)

  • Kim, Dong Woo;Jang, Mi Jeong;Park, Ji Hyoung;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.762-776
    • /
    • 2013
  • Load duration curve was applied to determine important water quality parameter control term for improvement of Paldang lake water quality. Load duration curve was analyzed with long term data from 1985 to 2012 including water quality, flow rate and climate state of Paldang water environment. From the result of flow rate patterns of paldang lake, differences between high and low flow rate of each year showed tendency of increase because rainfall characteristics of paldang lake watershed were changed by climate exchange. Both of land use state of upper Paldang lake watershed and number of limit excess from load duration curve indicated that seasonal action related with land use such as agricultural fertilizer distribution in upper watershed affected Paldang lake water quality. So focused BOD (biological oxygen demand) management during spring season from march to June is required to control organic materials in Paldand lake. The main affecting factor of TOC (total organic carbon) increase in Paldang lake was initial rainfall after march. T-N (total nitrogen) kept increasing during research period, so enhancement of T-N standard is needed to T-N control. Initial rainfall and increase of temperature during spring season from March to June showed a positive correlation with TP (total phosphorus) and Chl-a, respectively.

Spatial Distribution of Dissolved Organic Matter Compositions Upstream of Ipobo (이포보 상류 용존 유기물의 공간적 분포 분석)

  • Yoon, Sang Mi;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • This research investigated the effects of weir (Ipobo) construction on the dynamics and the related spatial distributions of pollutants inflowing from tributaries (Yanghwacheon and Bokhacheon). Conductivity measurements and water sampling were conducted longitudinally, horizontally, and vertically in the waterbody upstream of the area located in Ipobo. Additionally, collected water samples were used for the dissolved organic carbon (DOC) analysis and fluorescence analysis which results in the SUVA, HIX, BIX, and FI calculation and parallel factor analysis (PARAFAC). Consequently, the results of the Conductivity, DOC, SUVA, and HIX showed that high concentration of pollutants that were flowing from the area of Bokhacheon which was mixed along the flow of the main river. The results of the BIX and FI did not show significant difference along the river flow which represented that allochthonous and terrestrial DOM, and for this reason was dominated in the whole waterbody rather than just the autochthonous DOM. The PARAFAC results showed that the two fluorescence components, humic-like and protein-like, constituted the fluorescence matrices of the water samples. The prevailing discipline notes that the two components were inflowing from the tributaries, however, a refractory component, humic-like substances, was relatively accumulated near the weir. From the results, the dynamics and spatial distributions of the DOM are dependent on the DOM characteristics, which induces the application of a specialized DOM analysis method to investigate the effects of a subsequent weir construction on the dynamics and spatial distributions of pollutants inflowing from the tributaries.

Determination of an Underground Seawater Flow Using a TEM Decay Curve (TEM감쇠곡선을 이용한 해수의 지하 유동현상 파악)

  • 황학수;문창규;이상규;이태섭
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • The geophysical monitoring technique using the high resolution time-domain electromagnetic (TEM) method with a coincident loop away was applied for determination of an underground seawater flow in the coastal areas. In comparison of the TEM monitoring to direct current (DC) resistivity monitoring, the TEM response to the under ground seawater flow is less sensitive than the DC resistivity response. However, the TEM monitoring is more effective in terms of measuring time, survey expense, and real-time data processing than the DC monitoring thor evaluating the spatial distribution of the fresh water-seawater transition zone in a regional area.

  • PDF

Performance Study on Pilot-scale Constructed Wetlands in order to Restore Contaminated Stream (오염하천의 정화를 위한 파일럿 규모의 인공습지 적용)

  • Kim, Seung-Jun;Choi, Yong-Su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.546-556
    • /
    • 2006
  • The purpose of this study is to improve the polluted stream water quality by pilot-scale five different constructed wetlands (CWs). Cell 1 to 3 are newly designed 2SFCW (Surface-subsurface flow CW) with 1 to 3 flow shifters (FS) in the middle of the wetland system. Cell 4 and 5 are control CW (CCW), but Cell 5 is the same type as Cell 3. The FS, which converts the route of surface and subsurface flow between two wetlands connected in series, was able to enhance the treatability of TN via nitrification and denitrification and of SS due to filtration and sedimentation. The void fraction and dispersion number of Cell 1, 2 and 3 obtained from the RTD analysis were found to be 0.73 and 0.17, respectively. COD and TP removal efficiencies of Cell 1 to 3 were similar to that of Cell 4 and 5. SS removal efficiencies of Cell 1 to 3 and 5 with FS were 5-10% higher than that of Cell 4 without FS. TN removal efficiencies of Cell 1 to 3 were 3-14% higher than that of Cell 4 and 5. The average $R^2$ values of COD, SS, TN and TP obtained from nonlinear regression analysis were similar to the results of other researchers.

Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios (기후변화 시나리오 편의보정 기법에 따른 강우-유출 특성 분석)

  • Kum, Donghyuk;Park, Younsik;Jung, Young Hun;Shin, Min Hwan;Ryu, Jichul;Park, Ji Hyung;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2015
  • Runoff behaviors by five bias correction methods were analyzed, which were Change Factor methods using past observed and estimated data by the estimation scenario with average annual calibration factor (CF_Y) or with average monthly calibration factor (CF_M), Quantile Mapping methods using past observed and estimated data considering cumulative distribution function for entire estimated data period (QM_E) or for dry and rainy season (QM_P), and Integrated method of CF_M+QM_E(CQ). The peak flow by CF_M and QM_P were twice as large as the measured peak flow, it was concluded that QM_P method has large uncertainty in monthly runoff estimation since the maximum precipitation by QM_P provided much difference to the other methods. The CQ method provided the precipitation amount, distribution, and frequency of the smallest differences to the observed data, compared to the other four methods. And the CQ method provided the rainfall-runoff behavior corresponding to the carbon dioxide emission scenario of SRES A1B. Climate change scenario with bias correction still contained uncertainty in accurate climate data generation. Therefore it is required to consider the trend of observed precipitation and the characteristics of bias correction methods so that the generated precipitation can be used properly in water resource management plan establishment.

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

Characteristic of Thermal Output of Thermally Activated Building System During the Heating Operation According to FDM Analysis (FDM 해석에 의한 구체축열시스템(TABS)의 난방운전시 방열 특성 분석)

  • Lim, Jae-Han;Song, Jin-Hee;Koo, Bo-Kyoung;Song, Seung-Yeong;Senog, Yoon-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • This study is focused on the evaluation of thermal output of TABS (Thermally Activated Building System). The aim of this study is to evaluate TABS in terms of the temperature difference between heating medium supply temperature ($T_s$) and return temperature ($T_r$), thermal output and the surface temperature distribution according to the design flow rate and the design flow temperature. Through the transient heat transfer simulation using temperature calculation using Crank-Nicolson FDM using Physibel Voltra 6.0 W, the temperature difference between $T_s$ and ��$T_r$, thermal output and the surface temperature distribution of specific TABS was calculated and evaluated. The results show that specific thermal output and temperature difference at $60^{\circ}C$ of supply water temperature were about 162 $W/m^2$, $13.6^{\circ}C$ respectively.

Evaluation of the Two Class Population Balance Equation for Predicting the Bimodal Flocculation of Cohesive Sediments in Turbulent Flow (난류조건에서의 점착성 유사 이군집 응집 모형 적용성 평가)

  • Lee, Byung Joon;Toorman, E.A.
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.233-243
    • /
    • 2015
  • The bimodal flocculation of cohesive sediments in water environments describes the aggregation and breakage process developing a bimodal floc size distribution with dense flocculi and floppy flocs. A two class population balance equation (TCPBE) was tested for simulating the bimodal flocculation by a model-data fitting analysis with two sets of experimental data (low and high turbulent flows) from 1-D flocculation-settling column tests. In contrast to the Single-Class PBE (SCPBE), the TCPBE could simulate interactions between flocculi and flocs and the flocculation mechanism by differential settling in a low turbulent flow. Also, the TCPBE could perform the same quality of simulation as the elaborate Multi-Class PBE (MCPBE), with a small number of floc size classes and differential equations. Thus, the TCPBE was proven to be the simplest model that is capable of simulating the bimodal flocculation of cohesive sediments in water environments and water, wastewater treatment systems.

Numerical Simulation of the Water Level and Velocity Distribution of Main Point Agricultural Land Water Proof in Saemangeum Watershed (논문 - 새만금호 농업용지 방수제 주요지점의 수위 및 유속 분포 수치모의)

  • Kim, Dong-Joo;Kim, Ji-Sung;Park, Young-Jin
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.43-53
    • /
    • 2011
  • In this study, the internal development of the Saemangeum basic concept of the changes being promoted as a lead construction and agricultural land works(54.2 km) has established a numerical model for the scenario. Inner dike to the construction site to reflect the following conditions to reproduce the numerical model by each areas during construction inner dike where scour expected to perform a numerical analysis for the hydraulic review by areas with possible future changes were to predict. Simulation results showed that numerical simulation results for scour expected frequency of 100 years in flood conditions is simulated with 0.02 m/s~l.27 m/s scour velocity for high-impact factor is considered to be stable. Each start point and end point work area of inner dike reviewed and flow rate of 100 years flood, the velocity distribution in the influx of a large flow rate of 0.02 m/s~1.68 m/s occur during construction inner dike are not being evaluated as a special issue does not occur will be considered according to the method and order of construction inner dike stability review suggests that the future need to be made.

  • PDF