• Title/Summary/Keyword: the distribution of water flow

Search Result 1,191, Processing Time 0.035 seconds

Management of Water Distribution Systems using Optimization Model (관망관리를 위한 최적화 모형의 구성)

  • Lee, BeumHee
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2004
  • Time pasages could deteriorate the flow ability and hold the flow in the water distribution facilities because of their erosion and breakdown. It is necessary that the study to determine the optimal change time and the improvement plan for the continuous management using optimization methods or decision support systems. But, the present study tendency only aware the changes of hydraulic characteristics without industrial management plans. This study shows the pipe replacement program in these two concepts and the elementary process to apply it to Daejeon city.

  • PDF

The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions (헤더-채널 분기관의 각도변화가 2상 유동 분배에 미치는 영향에 대한 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.559-566
    • /
    • 2015
  • The main objective of this work is to experimentally investigate the effect of angle variation on the distribution of two-phase flow at header-channel junctions. The cross-sections of the header and the channels were fixed at $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Air and water were used as the test fluids. Four different header-channel positions were tested : Vertical header with Horizontal channels (case VM-HC), Horizontal header with Horizontal channels (case HM-HC), Horizontal header with Vertical Downward channels (case HM-VDC), and Horizontal header with Vertical Upward channels (case HM-VUC). In all cases, liquid flow distribution tended to decrease gradually in the upstream header region. However, in the downstream region, different trends could be seen. The reason for these different tendencies were identified by flow visualization in each case. The standard deviations for the liquid and gas flow distribution in each case were calculated, and the case of VM-HC had the lowest values compared to other cases because of the symmetrically distributed liquid film and strong flow recirculation near the end plate.

Reliability Analysis for Probability of Pipe Breakage in Water Distribution System (상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석)

  • Kwon, Hyuk Jae;Lee, Cheol Eung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

Groundwater Flow Analysis using Numerical model in Small Basin (소규모유역의 수치모헝을 이응한 지하수 유동해석)

  • 최윤영
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.615-626
    • /
    • 2003
  • The applied model for this study area is WINFLOW using mite element method, It is thought that the simulation result by WINFLOW model under the steady flow state reflects well the ground water distribution within the reliability level which shows the error range of 1.1% to 8.0% from the comparison between the computed values and the observed, and analyzed that the constant head distribution is shown along the east-west direction and gentle and stable head gradient along the north-south direction. Ground water of the study area shows stable movement from the south to the stream area, and the particle trace for each location shows relatively linear shape from the upstream to the pumping location while the radius of influence according to the pumping amount shows a significant difference at the down stream area from the pumping location. The simultaneous pumping from P and P1 shows more complicated appearance, not the increase of the radius of influence than pumping from a single well P or P1, and it is analyzed that the particle path takes nearly linear form. It is known that the flow direction of the ground water and the velocity of the flow affect on the magnitude of the radius of influence of the wells from the fact that the more decreasing pattern of the ground water head is observed at the side of the well and the down stream area than the upstream area when the ground water moves from south to north regarding the radius of influence according to the pumping amount. Satisfactory results in analyses of ground water movement are obtained through the significant reduction of the physical uncertainties in the flow system as well as the relatively convenient model application using WINFLOW model which is proposed in this study.

Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics

  • Choi, Changkyoo;Lee, Chulmin;Park, No-Suk;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • This study analyzes the velocity and pressure incurred by protruding shapes installed within the inlet part of a pressurized membrane module during operation to determine the fluid flow distribution. In this paper, to find the flow distribution within a module, it investigates the velocity and pressure values at cross-sectional and outlet planes, and 9 sections classified on outlet plane using computational fluid dynamics. From the Reynolds number (Re), the fluid flow was estimated to be turbulent when the Re exceeded 4,000. In the vertical cross-sectional plane, shape 4 and 6 (round-type protrusion) showed the relatively high velocity of 0.535 m/s and 0.558 m/s, respectively, indicating a uniform flow distribution. From the velocity and pressure at the outlet, shape 4 also displayed a relatively uniform fluid velocity and pressure, indicating that fluid from the inlet rapidly and uniformly reached the outlet, however, from detailed data of velocity, pressure and flowrate obtained from 9 sections at the outlet, shape 6 revealed the low standard deviations for each section. Therefore, shape 6 was deemed to induce the ideal flow, since it maintained a uniform pressure, velocity and flowrate distribution.

Numerical Modeling of Circulation and Salinity Distribution in Seomjin River Estuary

  • Made Narayana Adibhusana;Yonguk Ryu;Taehwa Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.526-526
    • /
    • 2023
  • Water circulation plays a crucial role in regulating the salinity of estuaries, which is essential for the survival of estuarine organisms. Changes in freshwater inflows or sea level can have significant impacts on the distribution and abundance of species within these ecosystems. To better understand these dynamics, this paper presents a study of water circulation and salinity distribution in Seomjin River estuary using the Finite Volume Coastal Ocean Model (FVCOM) numerical model. An extreme scenario was simulated to assess the potential impact of tidal currents and river flow discharge on circulation and salinity distribution. The results of this study have important implications for managing estuarine ecosystems and conserving their associated biodiversity.

  • PDF

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.

The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, Their Impact on the Distribution of Zooplankton in the Southern Yellow Sea

  • Wang, Rong;Zuo, Tao
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.1-13
    • /
    • 2004
  • The Yellow Sea Warm Current (YSWC) and the Yellow Sea Cold Bottom Water (YSCBW) are two protruding features, which have strong influence on the community structure and distribution of zooplankton in the Yellow Sea. Both of them are seasonal phenomena. In winter, strong north wind drives southward flow at the surface along both Chinese and Korean coasts, which is compensated by a northward flow along the Yellow Sea Trough. That is the YSWC. It advects warmer and saltier water from the East China Sea into the southern Yellow Sea and changes the zooplankton community structure greatly in winter. During a cruise after onset of the winter monsoon in November 2001 in the southern Yellow Sea, 71 zooplankton species were identified, among which 39 species were tropical, accounting for 54.9 %, much more than those found in summer. Many of them were typical for Kuroshio water, e.g. Eucalanus subtenuis, Rhincalanus cornutus, Pareuchaeta russelli, Lucicutia flavicornis, and Euphausia diomedeae etc. 26 species were warm-temperate accounting for 36.6% and 6 temperate 8.5%. The distribution pattern of the warm water species clearly showed the impact of the YSWC and demonstrated that the intrusion of warmer and saltier water happened beneath the surface northwards along the Yellow Sea Trough. The YSCBW is a bottom pool of the remnant Yellow Sea Winter Water resulting from summer stratification and occupy most of the deep area of the Yellow Sea. The temperature of YSCBW temperature remains ${\leq}{\;}10^{\circ}C$ in mid-summer. It is served as an oversummering site for many temperate species, like Calanus sinicus and Euphaisia pacifica. Calanus sinicus is a dominant copepod in the Yellow Sea and East China Sea and can be found throughout the year with the year maximum in May to June. In summer it disappears in the coastal area and in the upper layer of central area due to the high temperature and shrinks its distribution into YSCBW.

determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system (다단계 반복기법을 이용한 관로시스템의 최적관경 결정)

  • Han, Geon-Yeon;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.327-335
    • /
    • 1998
  • The distribution network is an essential part of all water supply systems. The cost of this portion of any sizable water supply system may amount to most of the entire cost of the project. This study tried to reduce the cost of the distribution system through optimization in system design. To determine pipe diameter considered in water distribution system design, a iterative procedure linked the flow analysis model and optimization model was used. Linear theory was introduced to analyze flowrate and revised-simplex method based on linear programming is used to optimize pipe diameter. This model was applied to wter distribution system with 22 and 35 pipes, and rapidly determine optimized commercial pipe diameters. Keywords : water distribution system, revised simplex method, optimum pipe diameters.

  • PDF

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.