• 제목/요약/키워드: the decreased size and volume

검색결과 482건 처리시간 0.03초

용매증발법을 이용한 Poly-L-Lactic Acid (PLLA) 마이크로스피어 제조 (Preparation of Poly-L-Lactic Acid (PLLA) Microspheres by Solvent-Evaporation Method)

  • 김태형;송기창
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.461-468
    • /
    • 2018
  • Poly-L-lactic acid (PLLA)를 출발물질로 하여 용매증발법에 의해 마이크로스피어를 제조하고, 제조 변수가 형성된 마이크로스피어의 형상 및 평균 입경에 미치는 영향을 살펴보았다. PVA 수용액의 농도가 1~5 wt%로 증가함에 따라 평균입경이 $370{\sim}160{\mu}m$으로 감소하다가 7 wt%에서다시 $240{\mu}m$으로 증가하였다. 그리고 PVA의첨가부피가 10~50 mL로 증가함에 따라 평균 입경은 $370{\sim}220{\mu}m$으로 감소하였다. 또한 교반속도가 500~1,500 rpm으로 증가함에 따라 평균 입경은 $370{\sim}110{\mu}m$으로 감소하였다. 유기용매로써 dichloromethane과 chloroform을 각각 사용한 경우 평균 입경은 큰 차이를 보이지 않았으며, dichloromethane을 사용한 경우 표면에서 공극이 확인되었으나 chloroform을 사용한 경우 매끈한 형상의 구형입자가 얻어졌다.

Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

  • Wei, Shaoqing;Lee, Sangjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.36-40
    • /
    • 2015
  • Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone [1]. Several models for ECR ion source were and will be constructed depending on their operating conditions [2-4]. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing [5]. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

Aging-Related Changes in Hand Intrinsic and Extrinsic Muscles and Hand Dexterity : an MRI Investigation

  • Hsu, Jeffrey;Koh, Kyung;Park, Yang-Sun;Kwon, Hyun-Joon;Kim, Yoon-Hyuk;Shin, Joon-Ho;Shim, Jae-Kun
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.371-381
    • /
    • 2015
  • Object : The purpose of this study was to investigate aging-related changes of intrinsic and extrinsic hand muscles in their strength, cross-sectional area and volume, force control, and multi-digit synergies. It was hypothesized that aging would negatively affect distal muscles (intrinsic muscles) more than proximal muscles (extrinsic muscles). Method : Nine young and eleven older right-handed participants underwent MRI scans of the hand and forearm. Muscle cross-sectional areas and volumes of the intrinsic and extrinsic hand muscles were determined. Result : Muscle volume of the intrinsic muscles were larger in the younger group than the older group while muscle volume of the extrinsic muscles did not differ. For the cross-sectional area, both the intrinsic and extrinsic muscles of the younger group were larger than the older group. The maximum strength of the intrinsic muscles of the young group was 31% greater than the older group ($399.1{\pm}26.4$ vs $270.2{\pm}22.9Ncm$, p < 0.05) while the extrinsic muscles showed no significant difference. Although the elderly group showed a trend of decreased force control and multi-digit synergies, no statistical differences were found. These findings indicate aging-related decreases in hand muscle size and strength affect intrinsic muscles more than extrinsic muscles, thus supporting the hypothesis that sarcopenia affects the muscle size and strength of distal muscles more than proximal muscles. Conclusion : The aging-related decreases in hand muscle size and function were more apparent in intrinsic hand muscles, located more distally, than extrinsic muscles, located more proximally.

Effects of Tungsten Particle Size and Nickel Addition in DC arc Resistance of Cu-W Electrode

  • Kim, Bong-Seo;Jeong, Hyun-Uk;Lee, Hee-Woong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권2호
    • /
    • pp.68-72
    • /
    • 2004
  • The performance of copper-tungsten for electrodes used in an ultra high voltage interruption system was evaluated by means of an interruption test, which requires a large-scale apparatus and high cost. In this study, prior to the interruption test, the characteristics of a Cu-W electrode were estimated through the DC arc test, which is a simple, low cost procedure. The DC arc characteristics of a 20wt%Cu-80wt%W electrode were investigated with the change of tungsten powder size distribution and the addition of nickel. In specimens containing a high volume fraction of large sized tungsten particles, the relative density and hardness of sintered Cu-W electrodes increased while the electrical conductivity and the DC arc resistance decreased. Furthermore, the relative density became enhanced with the increase of the amount of nickel while the hardness and electrical conductivity diminished and the DC arc resistance worsened.

탄소강 조직의 형상 및 분포에 따른 유한요소해석 (Finite Element Analysis of Carbon Steel according to Shape and Distribution of Phase)

  • 서대철;이덕희;이정주;남수우;주웅용
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.780-790
    • /
    • 1997
  • In this study, the stress-strain relations of steels have been calculated as a function of microstructural morphologies of each phase by use of FEM program(i.e. ABAQUS). The mechanical behavior of low carbon steels is affected by the microstructural factors such as yield ratio, volume fraction, shape and distribution of each phase and so on. The effects of shape, volume fraction and yield ratio of each phase on the mechanical behavior were analyzed by using unit cell and whole specimen size models. Results obtained are summarized as follows. As the yield ratio of hard phase to that of soft phase and volume fraction of hard phase were increased, stress level of flow curves were increased. It was found that in whole specimen size model, as the particle size was decreased, higher stress level was shown. Lastly the relationship between microstructure and tensile properties was examined by using the steels with various microstructural morphologies.

A Simulation Method for Modeling the Morphology and Characteristics of Electrospun Polymeric Nanowebs

  • Kim Hyungsup;Kim Dae-Woong;Seo Moon Hwo;Cho Kwang Soo;Haw Jung Rim
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.107-113
    • /
    • 2005
  • We developed an algorithm to simulate the generation of virtual nanowebs using the Monte Carlo method. To evaluate the pore size of the simulated multi-layered nanoweb, an estimation algorithm was developed using a ghost particle having zero volume and mass. The penetration time of the ghost particle through the virtual nanoweb was dependent on the pore size. By using iterative ghost particle penetrations, we obtained reliable data for the evaluation of the pore size and distribution of the virtual nanowebs. The penetration time increased with increasing number of layers and area ratio, whereas it decreased with increasing fiber diameter. Dimensional analysis showed that the penetration time can be expressed as a function of the fiber diameter, area ratio and number of layers.

Fe-Mn 합금에서 γ→ε 마르텐사이트 변태의 Ms 온도에 미치는 오스테나이트 결정립크기의 영향 (Effect of Austenite Grain Size on Ms temperature of γ→ε Martensitic Transformation in an Fe-Mn Alloy)

  • 전중환;최종술
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.93-100
    • /
    • 1997
  • Effect of austenite grain size on starting temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation($M_s$) has been studied in an Fe-18%Mn alloy. Particular attention was paid on the variation of stacking fault energy with austenite grain size, which is considered to be a important factor affecting ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation. Austenite grain size was increased in a wide range from $13{\mu}m$ to $185{\mu}m$ with increasing solution treatment temperature from $700^{\circ}C$ to $1100^{\circ}C$. Hardness was decreased with increasing austenite grain size while the volume fraction of ${\varepsilon}$ martensite showed a reverse tendency, which indicates that the hardness is more dependent on austenite grain size than ${\varepsilon}$ martensite content. No significant change was found in $M_s$ temperature when the grain size was larger than about $30{\mu}m$. In case that, the austenite grain size was smaller than about $30{\mu}m$, however, $M_s$ temperature was marlkedly decreased with decreasing austenite grain size. A linear relationship between $M_s$ temperature and the stacking fault formation probability, i.e. the reciprocal of the stacking fault energy was obtained, which suggests that the variation of $M_s$ temperature with austenite grain size is closely related to the change in stacking fault energy.

  • PDF

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

Effects of Rearing Temperature on Larval Survival and Growth and on Reproductive Traits of Palaemon serrifer (Decapoda: Caridea: Palaemonidae)

  • Kim, Sung-Han
    • Fisheries and Aquatic Sciences
    • /
    • 제13권4호
    • /
    • pp.308-314
    • /
    • 2010
  • Larvae of Palaemon serrifer were reared in the laboratory under three different temperature regimes ($15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) to study the effects of rearing temperature on larval survival and growth, as well as other traits such as embryo volume, number of embryos (fecundity), incubation period, development. Mode and development period. Growth pattern was analyzed by measuring the molt increment and intermolt period. The intermolt period consistently increased with size and instar number and was shortest at $25^{\circ}C$. However, molt increments generally decreased with instar number. Number of embryos varied from 552 to 1355. The relationship between the number of embryos and carapace length was expressed by the equation (fecundity) y=2.7744x+0.208 ($R^2$=0.7961). Egg volume was a primary factor affecting other life-history traits. Egg volume was $0.078\;m^3$, which is relatively small thus embryos exhibited a relatively short incubation period and a comparatively short development period, and the nutritional mode was planktotrophic. Brood production was followed by a fast parturitional pattern. Most ovigerous females had mature ovaries when the parturial molt occurred soon after eclosion.

Effects of Packing Conditions on Apparent Resistivity Measurements of Polymer Powders

  • Park, K.S;S. Kawai;Kim, T.Y.;M. Yamaguma;T. Kodama;J.H Joung;M. Masui;M. Takeuchi
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제12C권4호
    • /
    • pp.229-235
    • /
    • 2002
  • The apparent volume resistivity of powders measured by both the tapping and the compressing methods was compared in this study. Factors such as applied voltage, pressure, corona charging, and so on affecting the apparent volume resistivity of polymer powders were also examined experimentally. Powders of polyacrylonitrile and Nylon 11 were mainly used. The values of the apparent resistivity of polymer powders taken by the tapping method turned out to be larger than those taken by the compressing method, which indicates that the apparent volume resistivity of polymer powders depends strongly on the measurement method. The apparent resistivity of polymer powders increased with an increase in applied voltage while it decreased with an increase in pressure, tapping time, and particle size. The influence of the moisture content of powder and corona charging on the resistivity of polymer powders is also discussed.