• Title/Summary/Keyword: the automatic

Search Result 14,197, Processing Time 0.044 seconds

A Study on the Location of Retail Trade in Kwangju-si and Its Inhabitants와 Effcient Utilization (광주시 소매업의 입지와 주민의 효율적 이용에 관한 연구)

  • ;Jeon, Kyung-sook
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.1
    • /
    • pp.68-92
    • /
    • 1995
  • Recentry the structure of the retail trade have been chanaed with its environmantal changes. Some studies may be necessary on the changing process of environment and fundamental structure analyses of the retail trade. This study analyzes the location of retail trades, inhabitants' behavior in retail tredes and their desirable utilization scheme of them in Kwangju-si. Some study methods, contents and coming-out results are as follows: 1. Retail trades can be classified into independent stores, chain-stores (supermarket, voluntary chain and frenchiise system and convenience store), department stores, cooperative associations, traditional, markets mail-order marketing, automatic vending and others by service levels, selling-items, prices, managements, methods of retailing and store or nonstore type. 2. In Kwangju, the environment of retail trades is related to the consumers of population structure: chanes in consumers pattern, trends toward agings and nuclear family, increase of leisur: time and female advances to society. Rapid structural shift in retail trade has also been occurred due to these social changes. Traditionl and premodern markets until 1970s altere to supermarkets or department stores in 1980s, and various types, large enterprises and foreign capitals came into being in 1990s. 3. The locational characteristics of retail trades are resulted from the spatial analysis of the total population distribution, and from the calculation of segregation index in the light of potential demand. The densely-populated areas occurs in newly-built apartment housing complex which is distributed with a ring-shaped pattern around the old urban core. The numbers and rates of the aged over sixty in Kwangsan-gu and the circumference area of Mt.Moodeung, are larger and higher where rural elements are remarkable. A relation between population distribution and retail trade are analysed by the index of population per shop. The index of the population number per shop is lower in urban center, as a whole, being more convenient for consumers. In newly-formed apartment complex areas, on the other, the index more than 1,000 per shop, meeting not the demands for consumers. Because both the younger and the aged are numerous in these areas, the retail trade pattern pertinent to both are needed. Urban fringes including Kwangsan-gu and the vicinity of Mt.Moodeung have some problems owing to the most of population number per shop (more than 1, 500) and the most extensive as well. 4. The regional characteristic of retail trade is analyzed through the location quotient of shops by locational patterns and centerality index. Chungkum-dong is the highest-order central place in CBD. It is the core of retail trades, which has higher-ordered specialty store including three big department stores, supermarkets and large stores. Taegum-dong, Chungsu-dong, Taeui-dong, and Numun-dong that are neiahbored to Chungkum-dong fall on the second group. They have a central commercial section where large chain stores, specialty shopping streets, narrow-line retailing shops (furniture, amusement service, and gallary), supermarkets and daily markets are located. The third group is formed on the axis of state roads linking to Naju-kun, Changseong-kun, Tamyang-kun, Hwasun-kun and forme-Songjeong-eup. It is related to newly, rising apartment housing complex along a trunk road, and characterized by markets and specialty stores. The fourth group has neibourhood-shopping centers including older residential area and Songjeong-eup area with independent stores and supermarkets as main retailing functions. The last group contains inner residential area and outer part of a city including Songjeong-eup. Outer part of miscellaneous shops being occasionally found is rural rather than urban (Fig. 7). 5. The residents' behaviors using retail trade are analyzed by factors of goods and facilities. Department stores are very high level in preference for higher-order shopping-goods such as clothes for full dress in view of both diversity and quality of goods(28.9%). But they have severe traffic congestions, and high competitions for market ranges caused by their sma . 64.0% of respondents make combined purpose trips together with banking and shopping. 6. For more efficiency of retail-trading, it is necessary to induce spatial distribution policy with regard to opportunity frequency of goods selection by central place, frontier regions and age groups. Also we must consider to analyze competition among different types of retail trade and analyze the consumption behaviors of working females and younger-aged groups, in aspects of time and space. Service improvement and the rationalization of management should be accomplished in such as cooperative location (situation) must be under consideration in relations to other functions such as finance, leisure & sports, and culture centers. Various service systems such as installment, credit card and peremium ticket, new used by enterprises, must also be carried service improvement. The rationalization and professionalization in for the commercial goods are bsically requested.

  • PDF

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

An Analysis on the Conditions for Successful Economic Sanctions on North Korea : Focusing on the Maritime Aspects of Economic Sanctions (대북경제제재의 효과성과 미래 발전 방향에 대한 고찰: 해상대북제재를 중심으로)

  • Kim, Sang-Hoon
    • Strategy21
    • /
    • s.46
    • /
    • pp.239-276
    • /
    • 2020
  • The failure of early economic sanctions aimed at hurting the overall economies of targeted states called for a more sophisticated design of economic sanctions. This paved way for the advent of 'smart sanctions,' which target the supporters of the regime instead of the public mass. Despite controversies over the effectiveness of economic sanctions as a coercive tool to change the behavior of a targeted state, the transformation from 'comprehensive sanctions' to 'smart sanctions' is gaining the status of a legitimate method to impose punishment on states that do not conform to international norms, the nonproliferation of weapons of mass destruction in this particular context of the paper. The five permanent members of the United Nations Security Council proved that it can come to an accord on imposing economic sanctions over adopting resolutions on waging military war with targeted states. The North Korean nuclear issue has been the biggest security threat to countries in the region, even for China out of fear that further developments of nuclear weapons in North Korea might lead to a 'domino-effect,' leading to nuclear proliferation in the Northeast Asia region. Economic sanctions had been adopted by the UNSC as early as 2006 after the first North Korean nuclear test and has continually strengthened sanctions measures at each stage of North Korean weapons development. While dubious of the effectiveness of early sanctions on North Korea, recent sanctions that limit North Korea's exports of coal and imports of oil seem to have an impact on the regime, inducing Kim Jong-un to commit to peaceful talks since 2018. The purpose of this paper is to add a variable to the factors determining the success of economic sanctions on North Korea: preventing North Korea's evasion efforts by conducting illegal transshipments at sea. I first analyze the cause of recent success in the economic sanctions that led Kim Jong-un to engage in talks and add the maritime element to the argument. There are three conditions for the success of the sanctions regime, and they are: (1) smart sanctions, targeting commodities and support groups (elites) vital to regime survival., (2) China's faithful participation in the sanctions regime, and finally, (3) preventing North Korea's maritime evasion efforts.

Studies on the Interspecific Grafting of Almond (Almond의 종간접목(種間接木)에 관(關)한 연구(硏究))

  • Park, Kyo Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.41 no.1
    • /
    • pp.7-18
    • /
    • 1979
  • Almonds are one of the oldest sources of food and oil for man as used the ice cream, candy, roast, salting, chocolate, breads, backed, cookies, and flavoring ect. So, we wish to plant Almond in our country at the most parts of mountains. In this purpose we must be find out of both root stock of more compatibility and new techniques of grafting was rather simples as compared with the many steps of machinary involved today. This investigation has been carried out to reveral compatibility and practical controls of environment effectives involved in the occurence of each difference combination results in interspecific grafting of Almonds on the root stock of Prunus mandshurica and Prunus persica as materials during the 9 months period from March to November in 1978. With these selected scions were 4 varieties of Almond employing as the Hal1's hardy, Nonpareil, and Thompson grafted in the polyethylene green house with almost identical provision made for effective controls of automatical supplying to heating and mistsprayers as the $22{\sim}25^{\circ}C$ of temperature and 70~90% humidity. Following results have been obtained. Those environmental controls were more effective and practical to grafting unions and success by means veneer-grafting at the green house. 1. Hall's hardy Almond grafted on the root stock of Prunus persica was more compatibility than Prunus mandshurica. 2. The survival percentages as follows of the 95.33% of Hall's hardy/Prunus persica and 92.66% of Hall's hardy/Prunus mandshurica. And those were no significant between root stock of both species. 3. The 3 varieties of sweet Almond grafted on the root stock of P. mandshurica. And those were no significant between root stock of both species. 4. And the survival percentages as fellows. Thompson 92.66%, Nonpareil 90.66% and Kapareil 89.33% those grafted on the root stock of Prunus persica. 5. And then the survival percentage of interspecific grafts on the root Prunus mandshurica as follows of the materials of Thompson 89.66%, Nonpareil 87%, Kapareil 85%. 6. The analysis of variance were no significant among the interactions between 3 varieties Almond and 2 species of root stock plants. 7. And the growth of interspecific grafts of the high 161cm, diameter 12.3mm and length of roots 21.5cm growth as the Hall's hardy Almond grafted on the root stock of Prunus persica. 8. The root stock plants of Prunus mandshurica more effected to 6~8 days early developed leafing of scions and dark green colour than the Prunus persica. 9. The identical provision of automatic systems was more effective to graft unions and grafting process. 10. The veneer-grafting method at the green house was more effective and practical method for the mass production of Almond grafts.

  • PDF

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

The Protective Effects of Ethanol Extract of Wild Simulated Ginseng on Carbon Tetrachloride Induced Acute Hepatic Injury in Mouse (사염화탄소 유발 급성 간독성 생쥐모델에서 산양삼 에탄올 추출물의 간 보호 효과)

  • Lee, Soo-Min;Park, Sun-Young;Jang, Gi-Seuk;Ly, Sun-Yung
    • Journal of Nutrition and Health
    • /
    • v.41 no.8
    • /
    • pp.701-710
    • /
    • 2008
  • The wild simulated ginseng (WSG) has been effectively used in folk medicine as a remedy against hepatic disease, hypertension and arthritic disease. However, there is still lack of scientific proof about its antioxidant capability. The present study has been conducted to evaluate the protective role of the WSG ethanol extract in the CCl4-induced oxidative stress and resultant hepatic disfunction in ICR mice. The electron donating abilities and IC50 of WSG etnanol extract were 76.86 ${\pm}$ 1.06% and 33.3 ${\mu}g$/mL (that of ascobic acid was 16.5 ${\mu}g$/mL), respectively. Total antioxidant status of WSG extract was 2.13 ${\pm}$ 0.06 mmoL/mg, while the values of ascorbic acid and BHT were 3.63 ${\pm}$ 0.06 and 3.12 ${\pm}$ 0.02, respectively. ICR mice (aged 3weeks) were fed for 4 weeks on AIN-93M diet and had free access to food and water. The animals were divided into three groups: normal group (intraperitoneally (i.p) injected with PBS at 100 ${\mu}L$/mouse), group C; CCl4-induced and without any treatment. (i.p injected only PBS, 100 ${\mu}L$ /mice), group G; CCl4-induced and treated with WSG (i.p injected with 5 mg WSG extract per mouse, suspended in 100 ${\mu}L$ phosphate buffer). After the i.p. injection of WSG or PBS (5 times for 7weeks), all mice were administered CCl4 in olive oil at the last day of the experiment, except for normal group. The normal group was administered only olive oil. Determination of plasma triglyceride, total cholersterol, fasting glucose and GPT activity was performed using automatic blood analyzer. To evaluate the protective effect against the oxidative stress, DNA fragmentation and TBARS were determined in blood leucocytes and RBC and hepatocyte, respectively. Body and organs weights and food intake did not show significant differences among the groups. Blood total cholesterol of group G was similar to that of normal group, which was the lowest in group C. The fasting blood glucose level was the highest in normal group (205.20 ${\pm}$ 135.24), which were decreased in group C (134.2 ${\pm}$ 79.31) and group G (126.48 ${\pm}$ 77.05). TBARS values in a red blood cell and hepatic tisuue homogenate were lower in group G comparing to the group C. DNA% in tail, tail length (TL) and tail moment (TM) of blood leucoocytes showed the highest values in group C (20.11 ${\pm}$ 2.47, 17.36 ${\pm}$ 2.58, 94.11 ${\pm}$ 12.29) and they were significantly diminished in group G (9.63 ${\pm}$ 1.19, 7.04 ${\pm}$ 1.50, 38.64 ${\pm}$ 7.60). In conclusion, wild simulated ginseng might be a protective agent against the oxidative stress.

Analysis of the Causes of Subfrontal Recurrence in Medulloblastoma and Its Salvage Treatment (수모세포종의 방사선치료 후 전두엽하방 재발된 환자에서 원인 분석 및 구제 치료)

  • Cho Jae Ho;Koom Woong Sub;Lee Chang Geol;Kim Kyoung Ju;Shim Su Jung;Bak Jino;Jeong Kyoungkeun;Kim Tae_Gon;Kim Dong Seok;Choi oong-Uhn;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.165-176
    • /
    • 2004
  • Purpose: Firstly, to analyze facto in terms of radiation treatment that might potentially cause subfrontal relapse in two patients who had been treated by craniospinal irradiation (CSI) for medulloblastoma, Secondly, to explore an effective salvage treatment for these relapses. Materials and Methods: Two patients who had high-risk disease (T3bMl, T3bM3) were treated with combined chemoradiotherapy CT-simulation based radiation-treatment planning (RTP) was peformed. One patient who experienced relapse at 16 months after CSI was treated with salvage surgery followed by a 30.6 Gy IMRT (intensity modulated radiotherapy). The other patient whose tumor relapsed at 12 months after CSI was treated by surgery alone for the recurrence. To investigate factors that might potentially cause subfrontal relapse, we evaluated thoroughly the charts and treatment planning process including portal films, and tried to find out a method to give help for placing blocks appropriately between subfrotal-cribrifrom plate region and both eyes. To salvage subfrontal relapse in a patient, re-irradiation was planned after subtotal tumor removal. We have decided to treat this patient with IMRT because of the proximity of critical normal tissues and large burden of re-irradiation. With seven beam directions, the prescribed mean dose to PTV was 30.6 Gy (1.8 Gy fraction) and the doses to the optic nerves and eyes were limited to 25 Gy and 10 Gy, respectively. Results: Review of radiotherapy Portals clearly indicated that the subfrontal-cribriform plate region was excluded from the therapy beam by eye blocks in both cases, resulting in cold spot within the target volume, When the whole brain was rendered in 3-D after organ drawing in each slice, it was easier to judge appropriateness of the blocks in port film. IMRT planning showed excellent dose distributions (Mean doses to PTV, right and left optic nerves, right and left eyes: 31.1 Gy, 14.7 Gy, 13.9 Gy, 6.9 Gy, and 5.5 Gy, respectively. Maximum dose to PTV: 36 Gy). The patient who received IMRT is still alive with no evidence of recurrence and any neurologic complications for 1 year. Conclusion: To prevent recurrence of medulloblastoma in subfrontal-cribriform plate region, we need to pay close attention to the placement of eye blocks during the treatment. Once subfrontal recurrence has happened, IMRT may be a good choice for re-irradiation as a salvage treatment to maximize the differences of dose distributions between the normal tissues and target volume.