• Title/Summary/Keyword: the Policy of Port Development

Search Result 234, Processing Time 0.02 seconds

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.

The Origin-Destination analysis of KORUS trade volume using spatial information (공간정보를 활용한 한-미 교역액의 기종점 분석)

  • Kang, Hyo-Won
    • International Commerce and Information Review
    • /
    • v.18 no.3
    • /
    • pp.47-72
    • /
    • 2016
  • The Government of Korea has always focused on developing and maintaining a surplus on the balance of payments as a successful trade policy. The focus should now be on spatial information hiding, revealing patterns in trade activities that enable viewing trade in a more sophisticated manner. This study utilizes trade statistical data such as the United States-South Korea imports and exports from 2003 to 2015 officially released by the two countries. It allows us to analyze and extract the spatial information pertaining to the origin, transit, and destination. First, in the case of export data to the United States, the origin of the trade goods has expanded and decentralized from the metropolitan area. With regard to transit, in 2003, most of the exported goods were shipped by ocean vessels and arrived at the ports on the western coast of the United States. However, trade patterns have changed over the 12-year period and now more of that trade has moved to the southern ports of the United States. In terms of destination, California and Texas were importing goods from South Korea. With the development of the automotive industry in Georgia and Alabama, these two states also imported huge volumes of automobile parts. Second, in case of import data, most imported goods from the United States originated from California and Texas. In this case, 40% of goods were shipped by air freight and arrived at the Incheon-Seoul International Airport; most ocean freight was handled at the Port of Busan. The purpose of this study is to decompose the spatial information from the trade statistics data between Korea and the United States and to depict visualized bilateral trade structure by origin, transit, and destination.

  • PDF

Foreign Entry Strategies for Korean Fishery Firms (한국수산업의 해외진출전략에 관한 연구)

  • 김회천
    • The Journal of Fisheries Business Administration
    • /
    • v.15 no.1
    • /
    • pp.131-153
    • /
    • 1984
  • Fishery resources are still abundant compared with other resources and the possibility of exploitation is probably great. The Korean fishery industry has grown remarkably since 1957, and Korea is ranked as one of the major fishery countries. Its of fishery products reached the 9th in the world and the value of exports was 5th in 1982. But recently a growth rate has slowed down, due to the enlargement of territorial seas by the declaration of the 200 mile, Exclusive Economic Zone, the tendency to develop fishery resources strate-gically in international bargaining, the change in function of the international organizations, the expansion of regulated waters, the illegal arrest of our fishing boats, the rapid rise in oil prices, and the fall in fish prices, the development of fishery resources as a symbol of nationalism, the fishing boats decreptitude, the rise of crew wages, regulations on fishing methods, fish species, fishing season, size of fish, and mesh size, fishing quotas and the demand of excessive fishing royalties. Besides the the obligation of coastal countries, employing crews of their host countries is also an example of the change in the international environment which causes the aggravation of foreign profit of fishing firms. To ameliorate the situation, our Korean fishery firms must prepare efficient plans and study systematically to internationalize themselves because such existing methods as conventional fishing entry and licence fishing entry are likely to be unable to cope with international environmental change. Thus, after the systematic analysis of the problem, some new combined alternatives might be proposed. These are some of the new schemes to support this plan showing the orientation of our national policy: 1. Most of the coastal states, to cope with rapid international environmental change and to survive in the new era of ocean order, have rationalized their higher governmental structure concerning the fishery industries. And the coastal countries which are the objectives of our expecting entry, demand excessive economic and technical aid, limit the number of fishing boats’entry and the use of our foreign fishing bases, and regulate the membership of the international fishery commissions. Especially, most of the coastal or island countries are recently independent states, which are poorer in national budget, depend largely on fishing royalties and licence entry fees as their main resources of national finance. 2. Alternatives to our entry to deep sea fishing, as internationalization strategies, are by direct foreign investment method. About 30 firms have already invested approximately US $ 8 million in 9 coastal countries. Areas of investment comprise the southern part of the Atlantic Ocean, the Moroccan sea and five other sea areas. Trawling, tuna purse seining and five other fields are covered by the investment. Joint-venture is the most prominent method of this direct investment. If we consider the number of entry firms, the host countries, the number of seas available and the size of investment, this method of cooperation is perhaps insufficient so far. Our fishery firms suffer from a weakness in international competitive ability, an insufficiency of information, of short funds, incompetency in the market, the unfriendliness of host coastal countries, the incapability of partners in joint-ventures and the political instability of the host countries. To enlarge our foreign fishing grounds, we are to actively adopt the direct investment entry method and to diversity our collaboraboration with partner countries. Consequently, besides proper fishing, we might utilize forward integration strategies, including the processing fied. a. The enterprise emigration method is likely to be successful in Argentina. It includes the development of Argentinian fishing grounds which are still not exploited in spite of abundant resources. Besides, Arentina could also be developed as a base for the exploitation of the krill resources and for further entries into collaboration with other Latin American countries. b. The co-business contract fishing method works in American territorial seas where American fishermen sell their fishery products to our factory ships at sea. This method contributes greatly to obtaining more fishing quotas and in innovation bottom fishing operation. Therefore we may apply this method to other countres to diffuse our foreign fishing entry. c. The new fishing ground development method was begun in 1957 by tuna long-line experimental fishing in the Indian Ocean. It has five fields, trawling, skipjack pole fishing and shrimp trawling, and so on. Recently, Korean fisheries were successful in the development of the Antarctic Ocean krill and tuna purse seining. 3. The acceleration of the internationalization of deep sea fishing; a. Intense information exchange activities and commission participation are likely to be continues as our contributions to the international fishery organizations. We should try to enter international fishery commissions in which we are not so far participating. And we have to reform adequately to meet the changes of the function of the international commissions. With our partner countries, we ought to conclude bilateral fishery agreements, thus enlarging our collaboration. b. Our government should offer economic and technical aids to host countries to facilitate our firms’fishery entry and activities. c. To accelerate technical innovation, our fishery firms must invest greater amount in technical innovation, at the same time be more discriminatory in importing exogeneous fishery technologies. As for fishing methods; expanded use of multi-purpose fishing boats and introduction of automation should be encuraged to prevent seasonal fluctuations in fishery outputs. d. The government should increases financial and tax aid to Korean firms in order to elevate already weak financial structure of Korean fishery firms. e. Finally, the government ought to revise foreign exchange regulations being applied to deep sea fishery firms. Furthermore, dutes levied on foreign purchaed equipments and supplies used by our deep sea fishing boats thould be reduced or exempted. when the fish caught by Korean partner of joint-venture firms is sold at the home port, pusan, import duty should be exempted.

  • PDF

The Policy Review and Water Quality Characteristics of National Fishing Harbors and Designated Ports in East Coast of Korea (동해안 국가어항과 지정항만의 수질특성 및 정책적 고찰)

  • Lee, Dae-In;Kim, Gui-Young;Moon, Ju-Hoon;Eom, Ki-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.213-223
    • /
    • 2011
  • The status and changes of water quality of national fishing harbors and designated ports in East Coast of Korea were analyzed to support establishment effective water environmental management. COD (Chemical Oxygen Demand) concentration was satisfied to designated water quality criteria in most areas, but TN (Total Nitrogen) and TP (Total Phosphorus) exceeded the criteria frequently. Also, peak concentration was summer in COD and SS (Suspended Solid), but winter in TP. Eutrophication index of Ganggu and Pohang (old) area were the highest. Pollution index by function of COD, TN, and TP of Ganggu, Pohang, Jumunjin, and Guryongpo was high with gradual increasing recently, on the contrary, that of Samcheok, Imwon, and Chuksan was decreased. Pollution index involving multi-indictors relation to organics and inorganics was necessary for water quality assessment. Designated water quality criteria needed to be improved because the criteria of Jukbyun and Chuksan was applied more strictly compared to the other regions although without difference of environmental characteristics. Furthermore, the criteria notified lately needed to be related to management pollutants from land-based sources. The continuous diagnosis and monitoring on sediment quality within the study area were necessary for prevention of water pollution and eco-friendly disposal of dredged sediment. Especially, monitoring of Designated Ports was implemented partially, however monitoring ratio of National Fishing Har-bors was 7% to whole part. Therefore, systematic and integrated environmental monitoring for ports and harbors with charge of national management was reestablished by strengthening and securing a legal basis.