• Title/Summary/Keyword: the Navier's solutions

Search Result 123, Processing Time 0.024 seconds

Free vibration characteristics of three-phases functionally graded sandwich plates using novel nth-order shear deformation theory

  • Pham Van Vinh;Le Quang Huy;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • In this study, the authors investigate the free vibration behavior of three-phases functionally graded sandwich plates using a novel nth-order shear deformation theory. These plates are composed of a homogeneous core and two face-sheet layers made of different functionally graded materials. This is the novel type of the sandwich structures that can be applied in many fields of mechanical engineering and industrial. The proposed theory only requires four unknown displacement functions, and the transverse displacement does not need to be separated into bending and shear parts, simplifying the theory. One noteworthy feature of the proposed theory is its ability to capture the parabolic distribution of transverse shear strains and stresses throughout the plate's thickness while ensuring zero values on the two free surfaces. By eliminating the need for shear correction factors, the theory further enhances computational efficiency. Equations of motion are established using Hamilton's principle and solved via Navier's solution. The accuracy and efficiency of the proposed theory are verified by comparing results with available solutions. The authors then use the proposed theory to investigate the free vibration characteristics of three-phases functionally graded sandwich plates, considering the effects of parameters such as aspect ratio, side-to-thickness ratio, skin-core-skin thicknesses, and power-law indexes. Through careful analysis of the free vibration behavior of three-phases functionally graded sandwich plates, the work highlighted the significant roles played by individual material ingredients in influencing their frequencies.

Implicit Incompressible flow solver on Unstructured Hybrid grids (비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim J.;Kim Y.M;Maeng J.S
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

Dynamic analysis of viscoelastic FGM shells with porosities on elastic foundation

  • Mehmet Halil Calim;Omer Faruk Capar;Mehmet Bugra Ozbey;Yavuz Cetin Cuma
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.55-72
    • /
    • 2024
  • This study investigates free and damped vibration behaviours of porous functionally graded shells supported by Winkler-Pasternak foundation, considering different geometries. Utilizing a higher-order shear deformation theory, the displacement field is determined. The equations of motion are formulated using Hamilton's principle, and the solutions are obtained Navier's method employing double Fourier series. Parametric studies regarding the effects of porosity, material distribution, elastic foundation, shell geometry and damping are carried out. Results are given in tabular and graphical form for the free and forced vibration analyses, respectively.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation

  • Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • This paper, presents the dynamic and stability analysis of the simply supported single walled Carbon Nanotubes (SWCNT) reinforced concrete beam on elastic-foundation using an integral first-order shear deformation beam theory. The condition of the zero shear-stress on the free surfaces of the beam is ensured by the introduction of the shear correction factors. The SWCNT reinforcement is considered to be uniform and variable according to the X, O and V forms through the thickness of the concrete beam. The effective properties of the reinforced concrete beam are calculated by employing the rule of mixture. The analytical solutions of the buckling and free vibrational behaviors are derived via Hamilton's principle and Navier method. The analytical results of the critical buckling loads and frequency parameters of the SWCNT-RC beam are presented in the form of explicit tables and graphs. Also the diverse parameters influencing the dynamic and stability behaviors of the reinforced concrete beam are discussed in detail.

A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates

  • Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.223-240
    • /
    • 2015
  • In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is proposed. In order to introduce the size influences, the Eringen's nonlocal elasticity theory is utilized. In addition, the theory considers both shear deformation and thickness stretching effects by a trigonometric variation of all displacements within the thickness, and respects the stress-free boundary conditions on the top and bottom surfaces of the plate without considering the shear correction factor. The advantage of this theory is that, in addition to considering the small scale and thickness stretching effects (${\varepsilon}_z{\neq}0$), the displacement field is modelled with only 5 unknowns as the first order shear deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale plates are illustrated, and the computed results are compared with the available solutions in the literature and finite element model using ABAQUS software package. The influences of the nonlocal parameter, shear deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are examined.

Effect of material composition on bending and dynamic properties of FG plates using quasi 3D HSDT

  • Damani, Bakhti;Fekrar, Abdelkader;Selim, Mahmoud M.;Benrahou, Kouider Halim;Benachour, Abdelkader;Tounsi, Abdelouahed;Bedia, E.A. Adda;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.439-453
    • /
    • 2021
  • In this work, quasi three-dimensional (quasi-3D) shear deformation theory is presented for bending and dynamic analysis of functionally graded (FG) plates. The effect of varying material properties and volume fraction of the constituent on dynamic and bending behavior of the FG plate is discussed. The benefit of this model over other contributions is that a number of variables is diminished. The developed model considers nonlinear displacements through the thickness and ensures the free boundary conditions at top and bottom faces of the plate without using any shear correction factors. The basic equations that account for the effects of transverse and normal shear stresses are derived from Hamilton's principle. The analytical solutions are determined via the Navier procedure. The accuracy of the proposed formulation is proved by comparisons with the different 2D, 3D and quasi-3D solutions found in the literature.

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations

  • Abdelbari, Salima;Fekrar, Abdelkader;Heireche, Houari;Said, Hayat;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.329-348
    • /
    • 2016
  • This work presents a simple hyperbolic shear deformation theory for analysis of functionally graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and equations of motion than the first-order shear deformation model, but the transverse shear stresses account for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary surface without introducing shear correction factors. Equations of motion are obtained from Hamilton's principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing solutions to demonstrate the accuracy of the proposed theory.