• Title/Summary/Keyword: the Information Poor

검색결과 1,949건 처리시간 0.038초

A Study on the IDL Compiler using the Marshal Buffer Management

  • Kim, Dong-Hyun
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.843-847
    • /
    • 2005
  • The development of distributed application in the standardized CORBA(Common Object Request Broker Architecture) environments reduces the developing time and maintaining cost of the systems. Because of these advantages, the development of application is being progressed in the several fields using the CORBA environments. The programmers in the CORBA environments usually develop the application programs using the CORBA IDL(Interface Definition Language). The IDL files are compiled by IDL compiler and translated into the stubs and skeleton codes which are mapped onto particular target language. The stubs produced by IDL compilers processes the marshaling a data into message buffer. Before a stub can marshal a data into its message buffer, the stub must ensure that the buffer has at least enough free space to contain the encoded representation of the data. But, the stubs produced by typical IDL compilers check the amount of free buffer space before every atomic data is marshaled, and if necessary, expand the message buffer. These repeated tests are wasteful and incidence of overheads, especially if the marshal buffer space must be continually expanded. Thus, the performance of the application program may be poor. In this paper, we suggest the way that the stub code is maintain the enough free space before marshaling the data into message buffer. This methods were analyzes the overall storage requirements of every message that will be exchanged between client and server. For these analysis, in the Front End of compiler has maintain the information that the storage requirements and alignment constraints for data types. Thus, stub code is optimized and the performance of application program is increased.

  • PDF

The Effect of Membership Concentration in FVQ/HMM for Speaker-Independent Speech Recognition

  • Lee, Chang-Young;Nam, Ho-Soo;Jung, Hyun-Seok;Lee, Chai-Bong
    • 음성과학
    • /
    • 제12권4호
    • /
    • pp.7-16
    • /
    • 2005
  • We investigate the effect of membership concentration on the performance of the speaker-independent recognition system by FVQ/HMM. For the membership function, we adopt the result obtained from the objective function approach by Bezdek. Membership concentration is done by varying the exponent in the membership function. The number of selected clusters is constrained to two for the sake of cheap computational cost. Experimental results showed that the recognition rate has its maximum value when the membership function was taken to be inversely proportional to the distance of the input vector from the cluster centroid. When the membership concentration was two weak or too strong, the performance was found to be relatively poor as expected. Except these extreme cases, the membership concentration was not shown to affect the recognition rate significantly. This is in accordance with the general observation that the fuzzy system is not much sensitive. to the detailed shape of the membership function as long as it is overlapped over multiple classes.

  • PDF

히스토그램 평형 기법을 이용한 자기 공명 두뇌 영상 콘트라스트 향상 (Magnetic Resonance Brain Image Contrast Enhancement Using Histogram Equalization Techniques)

  • ;이수현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.83-86
    • /
    • 2019
  • Histogram equalization is extensively used for image contrast enhancement in various applications due to its effectiveness and its modest functions. In image research, image enhancement is one of the most significant and arduous technique. The image enhancement aim is to improve the visual appearance of an image. Different kinds of images such as satellite images, medical images, aerial images are affected from noise and poor contrast. So it is important to remove the noise and improve the contrast of the image. Therefore, for this purpose, we apply a median filter on MR image as the median filter remove the noise and preserve the edges effectively. After applying median filter on MR image we have used intensity transformation function on the filtered image to increase the contrast of the image. Than applied the histogram equalization (HE) technique on the filtered image. The simple histogram equalization technique over enhances the brightness of the image due to which the important information can be lost. Therefore, adaptive histogram equalization (AHE) and contrast limited histogram equalization (CLAHE) techniques are used to enhance the image without losing any information.

  • PDF

Automated Audiometry: A Review of the Implementation and Evaluation Methods

  • Shojaeemend, Hassan;Ayatollahi, Haleh
    • Healthcare Informatics Research
    • /
    • 제24권4호
    • /
    • pp.263-275
    • /
    • 2018
  • Objectives: Automated audiometry provides an opportunity to do audiometry when there is no direct access to a clinical audiologist. This approach will help to use hearing services and resources efficiently. The purpose of this study was to review studies related to automated audiometry by focusing on the implementation of an audiometer, the use of transducers and evaluation methods. Methods: This review study was conducted in 2017. The papers related to the design and implementation of automated audiometry were searched in the following databases: Science Direct, Web of Science, PubMed, and Scopus. The time frame for the papers was between January 1, 2010 and August 31, 2017. Initially, 143 papers were found, and after screening, the number of papers was reduced to 16. Results: The findings showed that the implementation methods were categorized into the use of software (7 papers), hardware (3 papers) and smartphones/tablets (6 papers). The used transducers were a variety of earphones and bone vibrators. Different evaluation methods were used to evaluate the accuracy and the reliability of the diagnoses. However, in most studies, no significant difference was found between automated and traditional audiometry. Conclusions: It seems that automated audiometry produces the same results compared with traditional audiometry. However, the main advantages of this method; namely, saving costs and increased accessibility to hearing services, can lead to a faster diagnosis of hearing impairment, especially in poor areas.

PM2.5 Estimation Based on Image Analysis

  • Li, Xiaoli;Zhang, Shan;Wang, Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.907-923
    • /
    • 2020
  • For the severe haze situation in the Beijing-Tianjin-Hebei region, conventional fine particulate matter (PM2.5) concentration prediction methods based on pollutant data face problems such as incomplete data, which may lead to poor prediction performance. Therefore, this paper proposes a method of predicting the PM2.5 concentration based on image analysis technology that combines image data, which can reflect the original weather conditions, with currently popular machine learning methods. First, based on local parameter estimation, autoregressive (AR) model analysis and local estimation of the increase in image blur, we extract features from the weather images using an approach inspired by free energy and a no-reference robust metric model. Next, we compare the coefficient energy and contrast difference of each pixel in the AR model and then use the percentages to calculate the image sharpness to derive the overall mass fraction. Furthermore, the results are compared. The relationship between residual value and PM2.5 concentration is fitted by generalized Gauss distribution (GGD) model. Finally, nonlinear mapping is performed via the wavelet neural network (WNN) method to obtain the PM2.5 concentration. Experimental results obtained on real data show that the proposed method offers an improved prediction accuracy and lower root mean square error (RMSE).

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • 한국측량학회지
    • /
    • 제39권2호
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

Joint Relay Selection and Resource Allocation for Cooperative OFDMA Network

  • Lv, Linshu;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.3008-3025
    • /
    • 2012
  • In this paper, the downlink resource allocation of OFDMA system with decode-and-forward (DF) relaying is investigated. A non-convex optimization problem maximizing system throughput with users' satisfaction constraints is formulated with joint relay selection, subcarrier assignment and power allocation. We first transform it to a standard convex problem and then solve it by dual decomposition. In particular, an Optimal resource allocation scheme With Time-sharing (OWT) is proposed with combination of relay selection, subcarrier allocation and power control. Due to its poor adaption to the fast-varying environment, an improved version with subcarrier Monopolization (OWM) is put forward, whose performance promotes about 20% compared with that of OWT in the fast-varying vehicular environment. In fact, OWM is the special case of OWT with binary time-sharing factor and OWT can be seen as the tight upper bound of the OWM. To the best of our knowledge, such algorithms and their relation have not been accurately investigated in cooperative OFDMA networks in the literature. Simulation results show that both the system throughput and the users' satisfaction of the proposed algorithms outperform the traditional ones.