• Title/Summary/Keyword: the Huff Model

Search Result 66, Processing Time 0.029 seconds

Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model (도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로)

  • Lee, Jaehyun;Park, Kihong;Jun, Changhyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.

Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul (우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이재준;이정식;전병호;이종태
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.49-57
    • /
    • 1993
  • A hydrological method is performed to determine the critical duration of design rainfall for the design of storm sewer in Seoul. To seize the effect of the duration and the temporal distribution of the rainfall to the peak discharge of the storm sewer, the Huff's quartile method is used as a temporal pattern for the design rainfall of any durations (9 cases for 20-240 min.) with 10 years return period. The critical duration of design rainfall is determined as the duration which maximizes the peak discharge. This study is applied to 18 urban drainage systems in Seoul. The ILLUDAS model is applied to runoff analysis, and the result shows that the duration which maximizes peak discharge is 30, 60 minutes generally. The relation diagram between peak discharge for the critical duration and watershed area is prepared for the design of storm sewer.

  • PDF

Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park (국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Lee, Sang-Ho;Kim, Hyung-Ho;Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

A Study on the Effects of the Type of Rainfall Distribution upon the Variation of the Critical Storm Duration : Sanbon Watershed (강우분포형태에 따른 임계지속기간의 변화 연구: 산본유역을 중심으로)

  • Yun, Yeo-Jin;Jeong, Sun-U;Jeon, Byeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 1998
  • In determining design runoff for the design of drainage systems, the concept of critical storm duration is applied. However, rainfall distribution is usually determined without well-defined standards. In this paper, through the application of ILLUDAS model to Sanbon basin, which is a small urbanized watershed, effects of various rainfall distributing types upon the determination of critical storm duration are throughly analyzed. As a result, it is revealed that peak discharge rates as well as critical storm duration are greatly influenced by the applied of rainfall distributions such as uniform, triangular, trapezoid, huff, central type using IDF curve. Keywords : critical storm duration, rainfall distribution, urban runoff, design storm, ILLUDAS.

  • PDF

An Analysis of PMF and Critical Duration for Design of Hydraulic Structure (수공구조물 설계를 위한 PMF 및 임계지속시간 분석)

  • Lee, Sang-Jin;Choi, Hyun;Shin, Hee-beom;Park, Sang-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.707-718
    • /
    • 2004
  • This study is to analyze the Probable Maximum Flood(PMF) as a part of counterplan for the disaster prevention of hydraulic structures such as dams, according to recent unfavorable weather conditions. During the period of typhoon RUSA in August 2002, the rainfall recorded in Gang-loeng Province was 880mm a day and exceeded the scale of PMP made in 2001. Accordingly, the reconsideration of hydrologic criteria for dam design was inevitable. In the design of dams for flood controls, the design flood must be determined by introducing the concept of maximum values. When the duration of design rainfall is determined, it needs to use the critical duration which causes the maximum flood by the maximum runoff. In this study, we Investigate the variation of critical duration with hydrologic parameters used in three different synthetic unit hydrographs(Clark, Nakayasu and SCS methods). As a result, the total runoff calculated from 24-hour duration is larger than that calculated from the critical duration. We calculate also the hydrographs with three different time distribution models(Huff's 4-quartile, IDF curve and Mononobe) and compare those with measured hydrograph data. From this comparison, we propose that the Huff's 4-quartile model must be used to obtain the desirable data in the hydrologic design of dams.

A Study on Optimal Time Distribution of Extreme Rainfall Using Minutely Rainfall Data: A Case Study of Seoul (분단위 강우자료를 이용한 극치강우의 최적 시간분포 연구: 서울지점을 중심으로)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.275-290
    • /
    • 2012
  • In this study, we have developed an optimal time distribution model through extraction of peaks over threshold (POT) series. The median values for annual maximum rainfall dataset, which are obtained from the magnetic recording (MMR) and the automatic weather system(AWS) data at Seoul meteorological observatory, were used as the POT criteria. We also suggested the improved methodology for the time distribution of extreme rainfall compared to Huff method, which is widely used for time distributions of design rainfall. The Huff method did not consider changing in the shape of time distribution for each rainfall durations and rainfall criteria as total amount of rainfall for each rainfall events. This study have suggested an extracting methodology for rainfall events in each quartile based on interquartile range (IQR) matrix and selection for the mode quartile storm to determine the ranking cosidering weighting factors on minutely observation data. Finally, the optimal time distribution model in each rainfall duration was derived considering both data size and characteristics of distribution using kernel density function in extracted dimensionless unit rainfall hyetograph.

A Study on Measurement of SERVQUAL and SERVPERF Measurement - A Sightsee- ing quality of Service to the centers - (SERVQUAL 측정과 SERVPERF 측정 이론 연구 -관광 서비스 품질을 중심으로-)

  • Kim, Chul-Jung
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.33-47
    • /
    • 2006
  • We will can do quality of measurement of service that thing is quite abstract concept. Generally, we speak Service of quality that property of a product, usability of use, social quality requirement to a quality of service by wide meaning. A purpose of this study was comparison regarding a way to measure of service quality, and in the insufficient section there was anything, and progress of model study of service left no matter how much focus to it. There is comparative study a few progress of literature of a PZB, SERVQUAL, SERVPERF, model. Desarbo, Huff, Rolandelli, & Choi, (1994: 125-131) proposed that to solve the above model contradiction point, and Presentation called a plan based on to Conjoint analysis. There is Critical point to decide on priority order of proposed model of service measurement. This study has a lot of the pieces which are short by absence of empirical study, but will make a supplementation in next term study.

  • PDF

A Sensitivity Analysis of Model Parameters involved in Clark Method on the Magnitude of Design Flood for urban Watersheds (CLARK 유역추적법에 의한 계획홍수량 산정에 미치는 매개변수의 민감도 분석)

  • Yoon, Kwang-Wonn;Wone, Seog-Yeon;Yoon, Yong-Nam
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 1994
  • A Sensitivity analysis on the model parameters involved in the Clark watershed routing method is made to demonstrate the effect of each parameter on the magnitude of 50-year design flood for small urban streams. As for the rainfall parameter the time distribution pattern of design storm was selected. For short duration storms Huff, Yen & Chow and Japanese Central type distributions were selected and the Mononobe distribution of 24-hour design storm was also selected and tested for Clark method application. The effect of SCS runoff curve number for effective rainfall and the methods of subbasin division for time-area curve were also tested. The routing parameter, i.e. the storage constant(K), was found to be the dominating parameter once design storm is selected. A multiple regression formula for K correlated with the drainage area and main channel slope of the basin is proposed for the use in urban stream practice for the determination of design flood by Clark method.

  • PDF

A Study on Trade Area Analysis with the Use of Modified Probability Model (변형확률모델을 활용한 소매업의 상권분석 방안에 관한 연구)

  • Jin, Chang-Beom;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.15 no.6
    • /
    • pp.77-96
    • /
    • 2017
  • Purpose - This study aims to develop correspondence strategies to the environment change in domestic retail store types. Recently, new types of retails have emerged in retail industries. Therefore, trade area platform has developed focusing on the speed of data, no longer trade area from district border. Besides, 'trade area smart' brings about change in retail types with the development of giga internet. Thus, context shopping is changing the way of consumers' purchase pattern through data capture, technology capability, and algorithm development. For these reasons, the sales estimation model has been shown to be flawed using the notion of former scale and time, and it is necessary to construct a new model. Research design, data, and methodology - This study focuses on measuring retail change in large multi-shopping mall for the outlook for retail industry and competition for trade area with the theoretical background understanding of retail store types and overall domestic retail conditions. The competition among retail store types are strong, whereas the borders among them are fading. There is a greater need to analyze on a new model because sales expectation can be hard to get with business area competition. For comprehensive research, therefore, the research method based on the statistical analysis was excluded, and field survey and literature investigation method were used to identify problems and propose an alternative. In research material, research fidelity has improved with complementing research data related with retail specialists' as well as department stores. Results - This study analyzed trade area survival and its pattern through sales estimation and empirical studies on trade areas. The sales estimation, based on Huff model system, counts the number of households shopping absorption expectation from trade areas. Based on the results, this paper estimated sales scale, and then deducted modified probability model. Conclusions - In times of retail store chain destruction and off-line store reorganization, modified Huff model has problems in estimating sales. Transformation probability model, supplemented by the existing problems, was analyzed to be more effective in competitiveness business condition. This study offers a viable alternative to figure out related trade areas' sale estimation by reconstructing new-modified probability model. As a result, the future task is to enlarge the borders from IT infrastructure with data and evidence based business into DT infrastructure.

Rainfall-Runoff Analysis of a Rural Watershed (농촌유역의 강우-유출분석)

  • Kim, Ji-Yong;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.93-98
    • /
    • 2001
  • This study was performed to analyse the rainfall and the rainfall-runoff characteristics of a rural watershed. The Sangwha basin($105.9km^{2}$) in the Geum river system was selected for this study. The arithmetic mean method, the Thiessen's weighing method, and the isohyetal method were used to analyse areal rainfall distribution and the Huff's quartile method was used to analyse temporal rainfall distribution. In addition, daily runoff analyses were peformed using the DAWAST and tank model. In the model calibration, the data from June through November, 1999 were used. In the model calibration, the observed runoff depth was 513.7mm and runoff rate was 45.2%, and the DAWAST model simulated runoff depth was 608.6mm and runoff rate was 53.5%, and the tank model runoff depth was 596.5mm and runoff rate was 52.5%, respectively. In the model test, the data from June through November, 2000 were used. In the model test, the observed runoff depth was 1032.3mm and runoff rate was 72.5%, and the DAWAST model simulated runoff depth was 871.6mm and runoff rate was 61.3%, and the tank model runoff depth was 825.4mm and runoff rate was 58%, respectively. The DAWAST and tank model's $R^{2}$ and RMSE were 0.85, 3.61mm, and 0.85, 2.77mm in 1999, and 0.83, 5.73mm, and 0.87, 5.39mm in 2000, respectively. Both models predicted low flow runoff better than flood runoff.

  • PDF