• Title/Summary/Keyword: the Huff Model

Search Result 66, Processing Time 0.028 seconds

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

Development of a Rainfall Time Distribution Model for Urban Watersheds (도시유역의 유출특성을 고려한 강우분포 모형의 개발)

  • Joo, Jin-Gul;Lee, Jung-Ho;Jo, Deok-Jun;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.655-663
    • /
    • 2007
  • This study suggests a new time distribution method of rainfall for small urban watersheds. IETD (Interevent Time definition) determination method considering basin characteristics and dimensionless accumulation rainfall curves involving rainfall events with shorter duration than 3-hours are suggested. A new definition of IETD is the time period from the end of a rainfall event to the end of a direct runoff. Using the method, we drive an area-IETD regression curve for the Joong-Rang basin. The rainfall event with 10 year-return periods, 2-hour duration is distributed and applied four urban watersheds. In the four watersheds, we calculate hydrographs for four watersheds using SWMM and compare them with ones of the Huff's distribution model. From the comparison, we find that peak flows resulted from the developed methodology are $11\sim15%$ larger than ones from the Huff's model. As conclusion, the Huff method should be adopted for the urban watersheds with careful verification.

Capacity Analysis of Civil Defense Shelter and Optimal Positioning Using Spatial-Database and Genetic Algorithm (공간데이터베이스와 유전자 알고리즘을 활용한 민방위대피소 수용 능력 분석 및 최적 위치 선정)

  • Yoo, Su Hong;Bae, Jun Su;Lee, Ji Sang;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.955-963
    • /
    • 2019
  • Currently, the establishment and management of civil defense shelters are under the initiative of the government and local governments to protect the lives of citizens. In the future, there is a need for efficient civil defense shelters operation through the expansion of general shelters, including designated dedicated shelters. Therefore, it is more efficient to consider the distribution of residents and the location of access to shelters, not the quantitative operation considering only the number of residents. This study uses genetic algorithms and Huff gravity model based on census output data, building data, and road network information to understand the distribution of inhabitants more precisely than existing administrative district data. In addition, the spatial- database was used for efficient data management and fast processing, and if this study is improved, it can be used as a basis for the selection and improvement of general shelters positioning for a wider area.

Analysis of Runoff Effect of Drainage System at Urban Watershed due to Urbanization (도시화에 따른 도시유역 배수계통의 유출영향분석에 관한 연구)

  • Seo, Kyu Woo;Heo, Jun Haeng;Cho, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.80-90
    • /
    • 1997
  • The ILLUDAS and SWMM models were applied to the developing area of Dongsucheon for comparisons of the total runoff, peak discharge and travel time. For this purpose, the present and future urbanization rates were assumed 70% and 90%, respectively. The runoff analysis of two models has been performed based on 10, 20, 30 and 50 return periods and Huff's 4 quantiles for time distribution pattern of design rainfalls. As results, the total runoff based on Huff's pattern had an decreasing order of 1, 4, 3 and 2 quantiles for both models. The SWMM model showed that there were 4.3% increasing of the total runoff, 4.9% increasing of peak discharge, and 6.6% decreasing of travel time. Similarly, for ILLUDAS model, there were 7.3% and 9.2% increasing of total runoff and peak discharge, respectively and 9.1% decreasing of travel time.

  • PDF

A Study on the Application of Time Distribution Model for Design Storms (설계강우의 시간적 분포모형 적용성 연구)

  • 서진호;이상배
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.205-217
    • /
    • 1995
  • The historical data from 3, 550 event storms during 11 years in Wi-stream basin have been used to investigate the statistical parameter of the time distribution for design storms by the method of Yen-Chow, Huff, Pilgrim-Cordery and Mononobe. The dimensionless value of triangular hyetograph, $a^0$, ranges from 0.44 to 0.50 and trapezoidal hyetograph, $h^0$, value increases as the duration time is getting longer in Yen-Chow method. In the Huff, the second-quartile storms occurred most frequently and third-quartile storms occurred most infrequently. In the Pilgrim-Cordery, the shapes for shorter than 6-hour durations are advanced tendency. However, for longer than 6-hour durations show delayed tendency. In the Mononobe, every one hour rainfall occured Centered Type. The application of these methods for each duration time was tested by using the observed rainfall-runoff data of Wi-stream basin. As a result, the reappearance of hydrographs of triangular hyetograph by Yen-Chow method showed promising, and it was approved to be used for prediction of the ungaged basins.

  • PDF

Analyzing Characteristic of Business District in Urban Area Using GIS Methods - Focused on Large-Scale Store and Traditional Market - (GIS 기법을 활용한 도시지역 상권 특성 분석 - 대형할인점과 전통시장을 중심으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.89-101
    • /
    • 2017
  • The study used GIS methods to analyze a business district consisting of traditional markets and large-scale stores, to determine the level of support needed for small enterprises in an urban area of Changwon-si, Gyeongsangnam-do. Data gathered on the area was analyzed using GIS tools such as Kernel density, Network analysis, and Huff modeling. Traditional markets are concentrated in areas where large-scale stores are located, and data analyses show that the number of consumer'use of large-scale stores (157,071) was three times that of traditional markets (59,953). One explanation for these results is that the large-scale stores are located either in densely populated areas or are adjacent to the traditional markets. Therefore, standards and regulations are needed to support small enterprise business districts. In the future, the results of this study can be used as a reference for planning and supporting traditional market business districts.

Analysis of Hydrological Impact by Typhoon RUSA using Landsat Images and Hydrological Model (Landsat영상과 수문모형을 이용한 태풍 RUSA에 의한 수문영향 분석)

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.391-399
    • /
    • 2005
  • The purpose of this study is to evaluate hydrological impact by the land cover change of typhoon damage. For the typhoon RUSA (rainfall 1,402 mm) occurred in 2002 (August $31\;{\sim}$ September 1), satellite images of Landsat 7 ETM+ of September 29, 2000 and Landsat 5 TM of September 11, 2002 were selected, and each land cover was classified for Namdae-cheon watershed $192.7km^2$ located in the middle-eastern part of Korea Peninsula. SCS unit hydrograph for watershed runoff and Muskingum for streamflow routing of WMS HEC-1 was adopted. 30m resolution DEM & hydrological soil group using 1:50,000 soil map were prepared. The model was calibrated using three available data of storm events of 1985 to 1988 based on 1985 land cover condition. To predict the streamflow change by damaged land cover condition, rainfall of 50 years to 500 years frequency were generated using 2nd quantile of Huff method. The damaged land cover condition treated as bare soil surface increased streamflow of $50.1\;m^3/sec$ for 50 years rainfall frequency and $67.6\;m^3/sec$ for 500 years rainfall frequency based on AMC-I condition. There may be some speedy treatment by the government for the next coming typhoon damage.

Infinite Slope Stability Analysis based on Rainfall Pattern in Ulleung-do (울릉도지역 강우패턴을 고려한 무한사면 안정성 해석)

  • Lee, Chung-Ki;Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of slope stability analysis is to predict the location and occurrence time considering the rainfall, topographic and soil characteristics, etc. In this study, infinite slope stability analysis considering the time distribution characteristics of the daily maximum rainfall was conducted using a model that combines a digital terrain model and a groundwater flow model. As the results of slope stability analysis, 69.1~70.0% of Fs < 1 cells are in the range of slope angle $20{\sim}50^{\circ}$ and Fs < 1 starts to appear in 2 hours for $Q_1$ model, 5 hours for $Q_2$, 7 hours for $Q_3$ and 6 hours for $Q_4$. Furthermore, the maximum number of Fs < 1 cells appear in 6 hours for $Q_1$ model, 12 hours for $Q_2$, 16 hours for $Q_3$ and 20 hours for $Q_4$, and the area of Fs < 1 is 14.3% for $Q_1$ model, 15.0% for $Q_2$, 15.6% for $Q_3$, and 16.3% for $Q_4$.

Bivariate Rainfall Frequency Analysis and Rainfall-runoff Analysis for Independent Rainfall Events (독립 호우사상에 대한 이변량 강우빈도해석 및 강우-유출해석)

  • Park, Cheol-Soon;Yoo, Chul-Sang;Jun, Chang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.713-727
    • /
    • 2012
  • In this study, the bivariate frequency analysis of the independent annual rainfall event series was done to be used for the runoff analysis, whose results were also compared with those from the conventional univariate frequency analysis. This study was applied to three differently-sized basins such as the Joongryang Stream, Chunggye Stream, and Ooyi Stream. The Clark model was used as the runoff model, and the SCS method was applied for the calculation of the effective rainfall. The alternating block method and the Huff method were considered to be compared for the temporal distribution of rainfall event. Summarizing the results are as follows. (1) The difference between the univariate and bivariate frequency analysis results were large when the rainfall duration was short, but significantly decreased as the rainfall duration increased. The univariate frequency analysis results were bigger when the rainfall duration was short, but smaller in opposite case. (2) The peak flow derived by applying the alternating block method was bigger than that by the Huff method. Also, the peak flow when applying the alternating block method increased as the rainfall duration increased, but converged smoothly around the rainfall duration of 24 hours. (3) For the Joongryang Stream, when applying the Huff method, the peak flow derived for the bivariate frequency analysis was bigger than that for the univariate case, but for the other two basins, the results were opposite. When applying the alternating block method, the results were consistent for all three basins that the peak flow derived by applying the bivariate frequency analysis was bigger than those by the univariate frequency analysis.

A Study on urban runoff by deter ministic simulation techniques. (확정론적 모의기법에 의한 도시유출 해석에 관한 연구)

  • 이은영;강관원
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 1982
  • In the past, the design flow of the urban storm drainage systems has been used largely on a basis of empirical and experience, and the rational formula one of empirical method has been widely used for our country, as well as world wide. But the empirical method has insufficient factor because minimal consideration is given to the relationship of the parameters in the equation to the processes being considered, and considerable use of experience and judgment in setting values to the coefficients in the equation is made. The postcomputer era of hydrology has brought an acceleration development of mathematical methods, thus mathematical models are methods which will greatly increase our understanding in hydrology. On this study, a simple mathematical model of urban presented by British Road Research Laboratory is tested on urban watersheds in Ju An Ju Gong Apartment. The basin is located in Kan Seog Dong, Inchon. The model produces a runoff hydrograph by applying rain all to only the directly connected impervious area of the basin. To apply this model the basin is divided into contributing areas or subbasins. With this information the time area for contributing is derived. The rainfall hyetograph to design storm for the basin flow has been obtained by determination of total rainfall and the temporal distribution of that rainfall determined on the basis of Huff's method form historical rainfall data of the basin. The inflows from several subbaisns are successively routed down the network of reaches from the upstream end to the outlet. A simple storage routing technique is used which involves the use of the Manning equation to compute the stage discharge curve for the cross-section in question. To apply the model to a basin, the pattern of impervious areas must be known in detail, as well as the slopes and sizes of all surface and subsurface drains.

  • PDF