• Title/Summary/Keyword: the Cretaceous sedimentary rocks

Search Result 156, Processing Time 0.029 seconds

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Age of the volcanism and deposition determined from the Cretaceous strata of the islands of Yeosu-si (여수시 도서지역의 백악기층에 나타나는 화성활동 및 퇴적시기)

  • Park, Kye-Hun;Paik, In-Sung;Huh, Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.70-78
    • /
    • 2003
  • Sado, Chudo, Mokdo, Nangdo, and Jeokgeumdo are the islands which belong to Hwajeong-myeon, Yeosu-si, Jeollanam-do and there are various kinds of volcanic rocks, volcaniclastic sedimentary rocks, and dinosaur-fossil bearing sedimentary rocks on these islands. This study is designed to constrain geologic ages of these volcanic and sedimentary rocks. K-Ar ages of these rocks indicate that the volcanism of this area occurred mainly during the period of 91.8 ${\pm}$ 3.5∼65.5 ${\pm}$ 1.3(l$\sigma$) Ma. Deposition ages of the sedimentary rocks were bracketed based on the ages of the volcanic rocks and observed field relationship between sedimentary and volcanic rocks. The oldest sedimentary deposit of the area is the volcanic pebble bearing conglomerate of the Jeokgeumdo and its deposition age is ca. 81 Ma or less. The deposition age of the Chudo shale, which belongs to stratigraphically upper sequence and bears many dinosaur footprints, is at least ca. 77 Ma. Conglomerate of the Mokdo was deposited at ca. 72∼70 Ma. The deposition age of the dinosaur fossil deposit of the Sado is at least ca. 65 Ma. All the investigated volcanic and sedimentary rocks of the Yeosu islands were formed during the late Cretaceous and dinosaurs lived until the latest Cretaceous in this area.

SHRIMP U-Pb Ages of Dinosaur and Bird Footprints found in Cretaceous Formation of Saok Island, Jeollanam-do, South Korea (전라남도 사옥도 백악기층에서 발견된 공룡과 새발자국 화석의 SHRIMP U-Pb 연대)

  • Kim, Cheong-Bin;Kim, Uijin;Park, Minsu;Hwang, Koo-Geun;Lee, Keewook
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • The geology of Saok island area in Jeollanam-do can be divided into 4 lithologic types: Jurassic granite, Cretaceous sedimentary rocks, acidic tuff and acidic dikes. In the Saok island area, dinosaur and web-footed bird footprints, arthropod trackway and silicified wood were found recently in the Cretaceous sedimentary rocks which composed of alternating light grey sandstone, shale and mudrock. The fossil-bearing sedimentary rock is overlain by an acidic tuff, and the sedimentary rock and acidic tuff are cut by acidic dykes. In order to constrain the depositional age of the Cretaceous sedimentary rocks in Saok island area, SHRIMP U-Pb zircon ages were determined in the tuffaceous sandstone and overlying acidic tuff. Zircon U-Pb ages of the sandstone and tuff are $83.58{\pm}0.86$ and $79.80{\pm}0.75Ma$, respectively, which belong to the Campanian of the Late Cretaceous. The U-Pb age of the acidic tuff indicates the eruption time of acidic tuff and thus the minimum age of the fossil-bearing sedimentary rocks in this area. Therefore, the formation age of the dinosaur and web-footed bird footprints can be constrained between 83.6 and 79.8 Ma.

On the Origin of Anorthosite in the Area of Hadong, Sancheong, Gyeongsang-namdo, Korea (하동일산청지역(河東一山淸地域)의 아노르도사이트의 성인(成因)에 관(關)하여)

  • Son, Chi Moo;Cheong, Ji Gon
    • Economic and Environmental Geology
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 1972
  • A large anorthositic mass outcropped as mushroom-like body extending up to 46km which occurs in the Hadong kaoline district of southern Korea. The anorthositic mass is in contact with the metamorphic, plutonic and sedimentary rocks. The metamorphic rocks are of granitic gneiss and banded gneiss, etc; the plutonic rocks are of gabbroic and dioritic rocks, schistose granite, syenite, diorite and granite. The sedimentary rocks include siltstone and pebbly sandstone of Lower Gyeongsang System, Cretaceous in age. The anorthositic mass shows a gradational contact with the metamorphic and sedimentary rocks, and is cut by the plutonic rocks except gabbroic and dioritic rocks. The anorthositic mass is leucocratic in the central portion of the mass, and, in turn, grades to rock phases in which ma/ic minerals are irregularly scattered, then to the well-lineated rock and finally to the banded gneiss. Lineation of the anorthositic mass is accordant with that of the surrounding banded gneiss, and the lineation continues toward the gneiss. In some places, the rock phases in which mafics are scattered is gradational with adjacent sedimentary rocks. The anorthositic mass in contact with gabbroic and dioritic rocks shows spotted features. Various replacement features seen under the microscope and paragenetic sequence of the mineral components in the anorthositic rocks cannot be considered as the origin of magmatic crystallization. From the field and microscopic observations, it is concluded that the anorthositic mass was formed from replacement of the metamorphic rocks and plutonic rocks by the anorthositic magma.

  • PDF

Geoengineering Characteristics of the Cretaceous Rock Cut Slopes in Jinju area (진주지역 중생대 암반절토사면 지반특성)

  • Kim, Seung-Hyun;Lee, Jung-Yup;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.652-661
    • /
    • 2006
  • The cut slopes in Jinju area constitute the Cretaceous Sedimentary rock which is one of the most poor ground conditions. The geological rocks of the cut slopes are correlated with Jinju Formation. Most of the rocks consist of Black Shale layer, but the lower parts consist of Alkorsic White Sandstone. So, It is characteristic of the differential weathering due to the difference of rock species. Moreover, vertical joints which concentrate on the released rock and weak rock fragments are accompanied with minor faults. We make out face mapping about each slopes through the detailed field-study and deduce RMR and SMR from the field data. The strength properties of rocks were obtained from references, indoor tests, and Back Analysis method. And, choosing properties were used in the stability analysis as stereographic projection and limit equilibrium analysis and we establish the countermeasures for the cut slopes.

  • PDF

Remagnetization of the Cretaceous Sedimentary Rocks in the Yeongdong Basin (영동분지에 분포하는 백악기 퇴적암류의 재자화)

  • Doh, Seong-Jae;Cho, Yun-Young;Suk, Dongwoo
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.193-209
    • /
    • 1996
  • Paleomagnetic and rock-magnetic data have been obtained from the Cretaceous rocks (Yeongdong Group, volcanic rock, and intrusive rocks) which are exposed in the Yeongdong Basin. The characteristic remanent directions of these rocks, which are mainly carried by magnetite and hematite of single and pseudo-single domain sizes, are normally magnetized (Yeongdong Group: $D/I=29.6/59.0^{\circ}C$, k=75.7, ${\alpha}_{95}=3.3^{\circ}$, N=25 sites, paleopole at $198.0^{\circ}E$, $66.4^{\circ}N$, K=46.1, $A_{95}=4.3^{\circ}$; volcanic rock: $D/I=352.8/44.1^{\circ}$, k=44.2, ${\alpha}_{95}=18.8^{\circ}$, N=3 sites, paleopole at $340.0^{\circ}E$, $78.8^{\circ}N$, $K=49.8^{\circ}E$, $A_{95}=17.6^{\circ}$X>; intrusive rocks: $D/I=358.4/51.9^{\circ}C$, k=20.0, ${\alpha}_{95}=13.8^{\circ}$, N=7 sites, paleopole at $338.1^{\circ}E$, $86.8^{\circ}N$, K=13.5, $A_{95}=17.1^{\circ}$). The stepwise unfolding of the characteristic remanent magnetization (ChRM) of the Yeongdong Group reveals that a maximum value of k is observed at 60% of unfolding with $D/I=13.0/58.6^{\circ}$ (k=124.62, ${\alpha}_{95}2.6^{\circ}$) indicating that the ChRM was aquired during ti1ting of the strata. This remagnetized ChRM in the sedimentary strata is due to acquisition of geomagnetic field direction at the time of formation of authigenic magnetic minerals, although it is not totally ruled out that the formation of authigenic magnetic minerals was affected indirect1y by the elevated temperature originated from the volcanic and intrusive rocks which intruded between Late Cretaceous and Early Tertiary.

  • PDF

Palaeomagnetic Study of Sedimentary and Igneous Rocks in the Yangsan Strike-slip Fault Area, SE Korea (양산단층지역에 분포하는 퇴적암 및 화성암류에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Son, Moon;Jung, Hyun-Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.753-765
    • /
    • 1996
  • It is a well known fact that the remanent magnetization direction of the Tertiary rocks is deflected significantly clockwise (about $50^{\circ}$) in the Tertiary basins of the southeastern part of Korean peninsula. This fact has been interpreted as an evidence of north-south spreading of the East Sea (Sea of Japan) and dextral strike-slip motion of the Yangsan fault. As deflection (rotation) of remanent magnetizations is frequently reported from various regions of the world in the vicinities of strike-slip fault, such phenomena are to be expected in the Yangsan fault region also. It was the purpose of this study to clarify whether such premise is right or not. A total of 445 independently oriented core samples were collected from Cretaceous rocks of various lithology (sedimentary rocks, andesites and I-type granites) in the Yangsan fault area. In spite of through AF and thermal demagnetization experiments, no sign of remanent magnetization deflection was found. Instead, palaeomagnetic poles calculated from formation-mean ChRM directions are very similar to those of contemporary (Barremian, and late Cretaceous-Tertiary) sedimentary and plutonic rocks in the other parts of $Ky{\check{o}}ngsang$ basin as well as those of China. Therefore, possibility of tilting of granite plutons and horizontal block rotation of study area is excluded. It is also concluded that the Yangsan fault did not take any significant role in the Cenozoic tectonic evolution of southeast Korea and the East Sea region. The boundary between rotated and unrotated region of remanent magnetization is not the Yangsan fault line, but must lie further east of it.

  • PDF

Radon Concentrations in Groundwater of the Goesan Area, Korea (괴산지역 지하수의 라돈 함량)

  • Cho, Byong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.63-70
    • /
    • 2017
  • Radon concentrations were measured in 250 groundwater samples collected from the Goesan area where uraniferous black slate and granites abundantly occur in the formations. The measured radon levels ranged from 0.90 to 7,218.7 Bq/L with the median value of 54.3 Bq/L, similar to the value measured in the nationwide survey in 4,853 wells (52.1 Bq/L). The median value was highest in the Cretaceous granite area (390.0 Bq/L) while it was as low as 20.0~58.8 Bq/L in the Ogcheon meta-sedimentary rock areas. About 23.6% of the total samples exceeded the WHO guideline value of 100 Bq/L established in 2011. The exceeding rate was 69.0, 39.4, and 7.0~13.7% in the Cretaceous granite area, Jurassic granite area, and Ogcheon meta-sedimentary rock areas, respectively.

Anisotropy of Magnetic Susceptibility of Cretaceous Volcanic Rocks in Euiseong Area (의성지역에 분포하는 백악기 화산암류에 대한 대자율 이방성연구)

  • Suk, Dongwoo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 1994
  • Euiseong sub-basin, one of three sub-basins in Kyungsang basin, consists of various sedimentary and igneous rocks of Cretaceous age. Kusandong tuff and Yucheon volcanic rocks from the sub-basin were collected for the anisotropy of magnetic susceptibility (AMS) study. Maximum directions of the AMS for Kusandong tuff and Yucheon volcanic rocks are used to detect possible source areas. Although the dispersion of the maximum directions of the AMS, mainly due to low susceptibility and/or low percent anisotropy of individual specimens, is rather large, it is possible to reveal several source areas for the volcanic rocks. Areas near the Keumseongsan and Hwasan, calderas in the study area, are identified as source areas for Yucheon volcanic rocks, while the western part of Sunamsan, another collapsed caldera in Euiseong sub-basin, is inferred to be the source area for Kusandong tuff. However, it is not possible to determine detailed source areas for groups of Yucheon volcanic rocks of different lithologies, because of poor degree of convergence of the maximum directions of the AMS results from the volcanic rocks. It is also concluded that several episodic volcanic activities centered at Keumseongsan and Hwasan calderas were responsible for the formation of Yucheon volcanic rocks in Euseong area.

  • PDF

Geophysical Prospecting for Geothermal Resources at Northern Part of Kumseongsan, Euiseong (의성 금성산 북부지역의 지열자원 지구물리탐사)

  • Lee, Gidong;Han, Kihwan;Kim, Kibeom;Lee, Jongmoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.35-44
    • /
    • 2006
  • Various geophysical methods and geological survey were applied for prospecting of geothermal resources and the attitude of volcanic body at northern part of Kumseongsan, Euiseong. They include magnetic, self-potential, radioactive and resistivity methods, temperature logging near the earth's surface and geological survey. The results of this study are summarized as follows. Various geophysical anomalies is related to the geologically Cretaceous conduit. Anomalies of resistivity and temperature logging seem to be related to the geological structure and terrestrial heat. Small radioactive and self-potential anomalies seem to be associated with chemical character of rocks. The sedimentary rocks dip steeply toward the volcanic rocks, aquifuge. Ideal geological structure for bearing ground water and geothermal resources was founded in the study area. The study area and the adjacent two hot springs area consist of Cretaceous sedimentary and volcanic rocks, and have similar geology.

  • PDF