• Title/Summary/Keyword: the AIR model

Search Result 5,901, Processing Time 0.03 seconds

Study of Discharge in Point-Plane Air Interval Using Fuzzy Logic

  • Bourek, Yacine;Mokhnache, Leila;Nait Said, Nacereddine;Kattan, Rafik
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • The objective of this paper is to study the discharge phenomenon for a point-plane air interval using an original fuzzy logic system. Firstly, a physical model based on streamer theory with consideration of the space charge fields due to electrons and positive ions is proposed. To test this model we have calculated the breakdown threshold voltage for a point-plane air interval. The same model is used to determine the discharge steps for different configurations as an inference data base. Secondly, using results obtained by the numerical simulation of the previous model, we have introduced the fuzzy logic technique to predict the breakdown threshold voltage of the same configurations used in the numerical model and make estimation on the insulating state of the air interval. From the comparison of obtained results, we can conclude that they are in accordance with the experimental ones obtained for breakdown discharges in different point-plane air gaps collected from the literature. The proposed study using fuzzy logic technique shows a good performance in the analysis of different discharge steps of the air interval.

The Impact of Ventilation Strategies on Indoor Air Pollution: A Comparative Study of HVAC Systems Using a Numerical Model (실내오염물질의 환기기술전략에 따른 영향평가 : 수치적 모델을 이용한 HVAC 시스템의 비교연구)

  • Park, Sung-Woo;Song, Dong-Woong;D.J. Moschandreas
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.45-54
    • /
    • 1995
  • Indoor air quality models are useful to predict indoor air pollutant concentrations as a function of several indoor factors. Indoor air quality model was developed to evaluate the pollutant removal efficiency of variable-air-volume/bypass filtration system (VAV/BPFS) compared with the conventional variable-air-volume (VAV) system. This model provides relative pollutant removal effectiveness of VAV/BPFS by concentration ratio between the conventional VAV system and VAV/BPFS. The predictions agree closely, from 5 to 10 percent, with the measured values for each energy load. As a results, we recommend the VAV/BPFS is a promising alternative to conventional VAV system because it is capable of reducing indoor air pollutant concentration and maintaining good indoor air quality.

  • PDF

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

Air System Modeling for State Estimation of a Diesel Engine with Consideration of Dynamic Characteristics (동적특성을 고려한 디젤엔진 흡배기 시스템의 상태추정 모델)

  • Lee, Joowon;Park, Yeongseop;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.36-45
    • /
    • 2014
  • Model based control methods are widely used to improve the control performance of diesel engine air systems because the control results of the air system significantly affect the emission level and drivability. However, the model based control algorithm requires a lot of unmeasurable states which are hard to be measured in a mass production engine. In this study, an air system model of the diesel engine is proposed to estimate 11 unmeasurable states using only sensors equipped in a mass production engine. In order to improve the estimation performance in the transient condition, dynamic characteristics of the air system are analyzed and implemented as discrete filters. Turbine and compressor efficiency models are also proposed to overcome a limitation of the constant or look-up table based efficiency values. The proposed air system model was validated in steady state and transient conditions by real-time engine experiments. The maximum error of the estimation for 11 physical states was 11.7%.

An empirical model of air bubble size for the application to air masker (에어마스커의 기포크기 추정 경험적 모델)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Park, Youngha;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.320-329
    • /
    • 2021
  • In this paper, an empirical model of air bubble size to be applied to an air masker for reduction of underwater radiation noise is presented. The proposed model improves the divergence problem under the low-speed flow condition of the existing model derived using Rayleigh's jet instability model and simple continuity condition by introducing a jet flow velocity of air. The jet flow velocity of air is estimated using the bubble size where the liquid is quiescent. In a medium without flow, the size of the bubble is estimated by an empirical method where bubble formation regime is divided into a laminar-flow range, a transition range, and a turbulent-flow range based on the Reynolds number of the injected air. The proposed bubble size model is confirmed to be in good agreement with the Computational Fluid Dynamics (CFD) analysis result and the experimental results of the existing literature. Using the acoustic inversion method, the air bubble population is estimated from the insertion loss measured during the air injection experiment of the air- masker model in a large cavitation tunnel. The results of the experiments and the bubble size model are compared in the paper.

The Validation of Air Pollution Simulation Models(comparisons between Hanna-Gifford Model and Air Quality Display Model in the Application to Air Pollution of Seoul) (대기오염 모델의 정합도에 대한 연구: (서울특별시 대기오염추계에 있어 Hanna - Gifford Model과 Air Quality Display Model의 적용에 대하여))

  • Chung, Yong;Jang, Jae-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.81-90
    • /
    • 1986
  • Hanna - Gifford Model and Air Quality Display Model(AQDM) were validated in the simulation of $SO_2$ and TSP concentrations of Seoul City. The observed data which were measured at 16 sites of air monitoring system conducted by Seoul metropolitan city in 1984 were compared with the simulated data and the results were obtained as follows; 1. Several different meteorological data were examined: The particularities of meteorological data was not an influencing factor in the validity of simulation. The simulations of $SO_2$ by Hanna - Gifford model and by AQDM showed close correlation coefficients between the observed data and the simulated data (r = 0.71 - 0.78). 2. The simulation models showed different validities with the seasonal variation: The correlation coefficients (r) between the observed and the simulated by Hanna - Gifford Model for $SO_2$ and TSP were 0.86 and 0.80 in Spring, 0.63 and 0.66 in Summer, 0.76 in Autumn and 0.81 and 0.93 in Winter respectively. Those by AQDM were 0.73 and 0.68 in Spring, 0.56 and 0.79 in Summer, 0.77 and 0.76 in Autumn and 0.64 and 0.68 in Winter respectively. 3. The simulated data by two models had a close relationships: The correlation coefficients between them were 0.96 for $SO_2$, and 0.93 for TSP. With the above results, the application of models was discussed; Hanna - Gifford model was less valid in the simulation for the air quality of $SO_2$ and TSP in Seoul in Summer and AQDM also was not valid for $SO_2$ in Summer and in Winter and for TSP in Spring.

  • PDF

A Study on the Photochemical Reaction Model of Air Pollutants (大氣汚染物質의 光化學 反應 모델에 關한 硏究)

  • 이화운;박종길
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.74-83
    • /
    • 1992
  • Photochemical reactions are important for the diurnal variation of the concentrations of air pollutants in the urban atmosphere. A photochemical reaction model was developed, which includes in terms of the effective chemical reaction. Various experimental results were introduced to the construction of model. To verify the applicability of the model, the simulated results were compared with those observed. By comparing the simulated results with those observed, it was shown that those two are in good agreement qualitatively. As a result, the photochemical reaction model which has been developed in this study is found to be useful for the prediction of concentrations of air pollutants in the atmosphere.

  • PDF

Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model (TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구)

  • 고권현;유홍선;이성혁;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.

Mathematical Modeling for Calculating the Vertical Air Temperature Distribution in an Atrium Space (아트리움 공간의 수직공기온도분포 계산을 위한 수학모형의 작성)

  • 박종수;안병욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.533-542
    • /
    • 2003
  • This study aims to propose a simplified mathematical model for calculating vertical air temperature distribution in a four-sided atrium. In the first stage of the mathematical modeling, the computer model combined zonal model and solar radiation model using Monte Carlo method and Ray tracing technique went through a computer simulation with architectural variables applied to a four-sided atrium in summer. In the next stage, Curve Expert, a computer program that gets the most suitable solution ac-cording to the least squares method, is used to analyze the results of the computer simulation and to derive the mathematical model. The accuracy of the mathematical model was evaluated through a comparison of calculation results from a mathematical model and computer simulation. In this validation step using the least square method, the R2 value of the Zones 1, 2 and 3 showed higher than 0.945. Zone 4 has an R2 value of 0.911, lower than the previous three zones. However the relative error was below 0.5%, which is considered very small.

The Prediction and Evaluation Air Pollutants Concentration around Industrial Complex by using Atmospheric Dispersion Models -Based on ISCST3, FDM, AERMOD- (대기확산모델을 사용한 공단주변지역의 대기오염물질농도 예측 및 평가 -ISCST3, FDM, AERMOD를 중심으로-)

  • 이화운;원경미;배성정
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.485-490
    • /
    • 1999
  • We will calculate concentration of air pollutants using ISCST3, FDM and AERMOD of models recommended in U. S. EPA which are able to predict concentration of short term for point source, complex like industrial complex, power plant and burn-up institution. Before executing model, as analyzing computational result of many cases according to selecting of input data, we will increasing predictable ability of model in limit range of model. Especially, we analyzed three cases-case of considering various emission rate according to time scale and not, case considering effect of atmospheric pollution materials removed by physical process. In our study, after comparing and analyzing results of three model, we choose the atmospheric dispersion model reflected well the characteristic of the area. And we will investigate how large the complex pollutant sources such as industrial complex contribute to atmospheric environment and air quality of the surrounding the area as predicting and estimating chosen model.

  • PDF