• Title/Summary/Keyword: the AIR model

Search Result 5,901, Processing Time 0.037 seconds

Development of Indicators for the Utilization of Environmental Health Policies in Gyeonggi-do (경기도 환경보건정책 활용을 위한 지표 개발)

  • Yoon-Kyung Gwak;Sun-Min An;Ha-Jin Jo;Ho-Hyun Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.5
    • /
    • pp.359-369
    • /
    • 2024
  • Background: Environmental health indicators are regarded as an important tool for assessing and monitoring environmental health policies. Some countries, including the United States and in Europe, have developed and utilized the indicators. Objectives: The main purpose of this study was to develop environmental health indicators in Gyeonggi-do for identifying specific regional environmental problems and environmental vulnerability and enhancing usefulness. Methods: A database of environmental health indicators was established by previous research, with indicators classified based on the DPSEEA (driving forces-pressures-state-exposure-effects-actions) model. The environmental health indicators reflect characteristics of environmental health in Gyeonggi-do for usefulness in linking with policies and reviewed plans for management. Results: The six principal components (outdoor/indoor air quality, climate changes, chemicals, water quality, noise, soil) and eighty-six indicators were extracted from the database of environmental health indicators. In addition, the environmental health indicators for Gyeonggi-do were verified for linkage in policies and reviewed plans for management. Conclusions: The environmental health indicators developed for Gyeonggi-do are a useful tool to identify current environmental health issues in Gyeonggi-do and develop regional policies to prevent environmental exposures and detect new risk factors.

Estimation of Uranium Particle Concentration in the Korean Peninsula Caused by North Korea's Uranium Enrichment Facility (북한 우라늄 농축시설로 인한 한반도에서의 공기중 우라늄 입자 농도 예측)

  • Kwak, Sung-Woo;Kang, Han-Byeol;Shin, Jung-Ki;Lee, Junghyun
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • North Korea's uranium enrichment facility is a matter of international concern. It is of particular alarming to South Korea with regard to the security and safety of the country. This situation requires continuous monitoring of the DPRK and emergency preparedness on the part of the ROK. To assess the detectability of an undeclared uranium enrichment plant in North Korea, uranium concentrations in the air at both a short and a long distance from the enrichment facility were estimated. $UF_6$ source terms were determined by using existing information on North Korean facility and data from the operation experience of enrichment plants from other countries. Using the calculated source terms, two atmospheric dispersion models (Gaussian Plume Model and HYSPLIT models) and meteorological data were used to estimate the uranium particle concentrations from the Yongbyon enrichment facility. A maximum uranium concentration and its location are dependent upon the meteorological conditions and the height of the UF6 release point. This study showed that the maximum uranium concentration around the enrichment facility was about $1.0{\times}10^{-7}g{\cdot}m^{-3}$. The location of the maximum concentration was within about 0.4 km of the facility. It has been assumed that the uranium sample of about a few micrograms (${\mu}g$) could be obtained; and that few micrograms of uranium can be easily measured with current measurement instruments. On the contrary, a uranium concentration at a distance of more than 100 kilometers from the enrichment facility was estimated to be about $1.0{\times}10^{-13}{\sim}1.0{\times}10^{-15}g{\cdot}m^{-3}$, which is less than back-ground level. Therefore, based on the results of our paper, an air sample taken within the vicinity of the Yongbyon enrichment facility could be used to determine as to whether or not North Korea is carrying out an undeclared nuclear program. However, the air samples taken at a longer distance of a few hundred kilometers would prove difficult in detecting a clandestine nuclear activities.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Life Cycle Assessment on Pump and Treatment Remediation of Contaminated Groundwater (오염 지하수 양수 및 처리 공정에 대한 전과정평가)

  • Cho, Jong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.405-412
    • /
    • 2011
  • Environmental impact by proposed pump and treatment remediation of groundwater contaminated with TCE over 0.6 mg/L down to 0.005 mg/L was assessed for 30 years operation in an industrial park. Total amount of groundwater treated was $2.96{\times}10^7m^3$ and the amount of TCE removed was 17.6 kg at most. The life cycle assessment was used to estimate the environmental cost and environmental benefit and their effects on the environment could be analyzed. Most of the environmental cost was accrued from electricity generation for 30 years pump operation, which includes energy consumption, resources consumption such as coal, crude oil, emission of global warming gas and acid gas into air, waste water production, and waste generation. Environmental impact could be quantified with a Life Cycle Assessment (LCA) model for soil and groundwater remediation and normalized based upon consumption and emission quantities per capita in the world. Among the normalized values, acidification material release was the most significant.

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.

A Study on the Estimation of Physical Parameters of Unsaturated Porous Media in the Laboratory (불포화 다공질매질의 물성치 측정을 위한 실험적 연구)

  • 김만일
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.169-177
    • /
    • 2004
  • The permeation movements of groundwater recharge and contaminate materials receive a eat effect due to porosity and effective porosity of porous media which is composing underground consisted of saturation and unsaturated states. This study developed Frequency Domain Reflectometry(FDR) system and measurement sensor, and then carried out the laboratory experiments to measure effective porosity for unsaturated porous media. Also, I suggested dielectric mixing models(DMMs) which can calculate the effective porosity from relation of measured dielectric constants. In the experimental results the extent range of effective porosity of standard sand and river sand which are unsaturated soil sample were measured in about 65∼85 % for porosity. In relation of effective porosity and porosity, especially, effective porosity confirmed that displays decreasing a little tendency as porosity increases. This is because unsaturated soil did not reach in saturation enough by air of very small amount that exist in pore between soil particles.

Contributive Estimation of Polycyclic Aromatic Hydrocarbons by Emission Source in Seoul Area (서울지역 대기 중 다환방향족탄화수소의 발생원별 기여도 평가)

  • Park, Chan-Koo;Yun, Joong-Sup;Eo, Soo-Mi;Shin, Jeong-Sik;Kim, Min-Young;Sohn, Jong-Ryeul;Mo, Sae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.287-295
    • /
    • 2006
  • PAHs (Polycyclic Aromatic Hydrocarbons), one of the carcinogenic materials in environment, were investigated in this study. The standardized analysis conditions were tested, and then various factors which affect to the ambient PAHs concentration in Seoul were estimated. Moreover, the emissions of PAHs from major stationary sources were investigated to determine the quantitative relationships between ambient PAHs concentrations and emission sources. From the factor analysis, three factors relevant to the ambient PAHs in Seoul were found. Factor 1 was related to the concentrations of chrysene, pyrene, indeno (1, 2, 3-cd)pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo prerylene which were mainly emitted from gasoline and diesel fueled cars. Factor 2 showed higher loadings in phenanthrene and anthracene which were due to LNG and BC oil combustion in industry and home. And factor 3 included dibenz(a, h)anthracene and acenaphthene which were emitted from open burning and municipal solid waste incineration. Conclusively, all of three factors were consisted in 82% of total variance. The contribution of mobile sources in ambient air in Seoul was estimated at 64%, that of industrial and home sources at 17%, and that of open burning and municipal incineration at 1%.

Stem Effect Correction Factor of Ionization Chamber in Exposure Measurements of High Energy Photons (고 에너지 광자선의 조사선량 측정 시 전리함의 스템효과 보정계수)

  • Park, Cheol-Woo;Lee, Jae-Seung;Kweon, Dae-Chel;Cha, Dong-Soo;Kim, Jin-Soo;Kim, Kyoung-Keun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Ionization chambers often exhibit a stem effect, caused by interactions of radiation with air near the chamber end, or with dielectric in the chamber stem or cable. In this study measured stem effect correction factor for length of ionization chamber from medical linear accelerator recommend to with the use of stem correction method. For a model of the Farmer-type chamber, were used to calculate the beam quality correction factor. These interactions contribute to the apparent measured exposure. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field. Linear accelerator generated photons energy and increased dose repeatedly measured by using stem correction method. Stem effect was dependence of the energy and increases with photon energy conditions improved of beam quality. In conclusion, stem effect correction factor was measured within 0.4% calculated according to the exposures stem length and also supposed to determined below 1% of another stem correction method.

  • PDF

Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI' (자율무인잠수정 테스트베드 이심이의 개발과 수조시험)

  • Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Lee, Fill-Youb;Oh, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.