• Title/Summary/Keyword: the AIR model

Search Result 5,905, Processing Time 0.037 seconds

Impact of Government Response to COVID-19 on the Role of GVC and Transportation

  • Hyuksoo Cho;Sang-kyun Kim
    • Journal of Korea Trade
    • /
    • v.27 no.2
    • /
    • pp.22-46
    • /
    • 2023
  • Purpose - study aims to investigate the relationships between global value chain (GVC)- and transportation-related determinants and economic performance. Also, moderating effects of COVID-19 on the relationships are theoretically and empirically discussed. A limitation of previous studies includes their over-reliance on the opportunities of GVC participation and larger transportation. This study represents the challenges associated with them. Also, it shows how GVC and logistics can be difficult in case of a market fluctuation such as COVID-19. Design/methodology - The sample for this study includes 828 observations from 138 countries. A semi-panel data set has been used. Six observations for each country are used to empirically test the hypotheses and a Two-way cluster model is conducted. Findings - It is confirmed that GVC forward participation contributes more than the backward participation to enhance performance. Transportation infrastructure is critical, but large scales of marine and air transportations are not positive in terms of economic performance. Stricter government response to COVID-19 negatively moderates economic performance by GVC backward participation and transportation infrastructure. Originality/value - The spread of COVID-19 is causing a severe collapse of GVC and transportation. This study empirically verifies the moderating effects of the government stringency on GVC and transportation. Previous studies usually discuss a positive impact of GVC and transportation size on economic performance. However, this study aims to show various challenges behind GVC participation and large scale transportation.

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.

The Effect of Cabin Crew Service Quality on Customer Loyalty

  • Changjoon LEE;Taehui KIM
    • The Journal of Industrial Distribution & Business
    • /
    • v.15 no.9
    • /
    • pp.11-19
    • /
    • 2024
  • Purpose: This study analyzes how cabin crew service quality influences customer loyalty in the aviation industry. Specifically, it examines how the reliability, professionalism, and authenticity of cabin crew services affect cognitive loyalty and whether such effects affect emotional loyalty. Design and methodology: We surveyed passengers who had used aviation services in the past year. Structural equation modelling was used to test our hypotheses. To test model fit and assess reliability, validity was developed for the measurement items of each variable. Findings: The results support all four hypotheses. Reliability, professionalism, and authenticity of cabin crew services positively influence cognitive loyalty. Furthermore, cognitive loyalty significantly and positively affects emotional loyalty. These findings highlight the crucial role of cabin crew in fostering both rational preference and emotional attachment among passengers. Conclusions: This study provides insights into developing customer loyalty in the aviation industry. It demonstrates the need to invest in cabin crew training, which ultimately affects all three service quality dimensions. It also indicates that carriers can consider cognitive loyalty as a gateway to emotional loyalty and should pursue strategies accordingly. These results provide airlines with practical implications for improving customer loyalty and furthering their competitive advantage in the industry.

Simultaneous Removal of H2S, NH3 and Toluene in a Biofilter Packed with Zeocarbon Carrier

  • Park, Byoung-Gi;Shin, Won-Sik;Jeong, Yong-Shik;Chung, Jong-Shik
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 2008
  • Simultaneous removal of $NH_3,\;H_2S$ and toluene in a contaminated air stream was investigated over 185 days in a biofilter packed with Zeocarbon granule as microbial support. In this study, multi-microorganisms including Nitrosomonas and Nitrobacter for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for $H_2S$ removal, and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) was 40-120 seconds and the feed (inlet) concentrations of $NH_3,\;H_2S$ and toluene were 0.02-0.11, 0.05-0.23 and 0.15-0.21 ppmv, respectively. The observed removal efficiency was 85%-99% for $NH_3$, 100% for $H_2S$, and 20-90% for toluene, respectively. The maximum elimination capacities were 9.3, 20.6 and $17g/m^3/hr\;for\;NH_3,\;H_2S$ and toluene, respectively. The results of kinetic model analysis showed that there were no particular evidences of interactions or inhibitions among the microorganisms, and that the three bio degradation reactions took place independently within a finite area of biofilm developed on the surface of the Zeocarbon carrier.

ANALYSIS ON FLOW FIELDS IN AIRFLOW PATH OF CONCRETE DRY STORAGE CASK USING FLUENT CODE (FLUENT를 활용한 콘크리트 건식 저장용기 공기유로 내부 유동장 해석)

  • Kang, G.U.;Kim, H.J.;Cho, C.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 2016
  • This study investigated natural convection flow behavior in airflow path designed in concrete dry storage cask to remove the decay heat from spent nuclear fuels. Using FLUENT 16.1 code, thermal analysis for natural convection was carried out for three dimensional, 1/4 symmetry model under the normal condition that inlet ducts are 100% open. The maximum temperatures on other components except the fuel regions were satisfied with allowable values suggested in nuclear regulation-1536. From velocity and temperature distributions along the flow direction, the flow behavior in horizontal duct of air inlet and outlet duct, annular flow-path and bent pipe was delineated in detail. Theses results will be used as the theoretical background for the composing of airflow path for the designing of passive heat removal system by understanding the flow phenomena in airflow path.

Effects of Premixed Flame on Turbulence Properties in a Pilot Flame Stabilized Jet Burner (파일럿 안정화 제트버너의 예혼합 화염이 미연가스 영역 난류특성에 미치는 영향)

  • Lee, Dae Hoon;Kwon, Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1172-1177
    • /
    • 1999
  • Comparisons of measured turbulence properties in the unburned gas region of turbulent premixed flame stabilized by pilot flame, in cases of combusting and non-combusting flow conditions, are presented. Methane-air premixed jet at fuel equivalence ratio of 0.6 and 1.0 and Reynolds number of 7,000 was diagnosed using two-color laser velocimeter to obtain turbulence statistics. Same set of measurements was repeated at 21 locations within the unburned gas region of both combusting and non-combusting conditions. Velocity data were analyzed to evaluate the spatial distribution of turbulence properties including Reynolds stress, probability densities, joint probability densities and auto correlations. Contrary to assumptions of current theoretical models, significant influence of flame was observed in every property that was studied in the present investigation. The effective viscosity increased ten-fold when flame was on from cold flow values. The effect of mixing on joint probability as well as in turbulence intensity was suppressed by the flame. The measurements suggest that common assumptions of premixed flame model may result in sizable error in prediction of flame length and temperature distribution in near-field.

Prediction of Airflow and Temperature Field in a Room With Convective Heat Source (열원이 존재하는 작업장내 기류 및 온도장 예측)

  • Jung, Yu-Jin;Ha, Hyun-Chul;Kim, Tae-Hyeung;Yoo, Guen-Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • A CFD simulation of airflow and temperature field in a heated room has been described in this paper. The thermal wall jet created by a radiator greatly influences the airflow pattern, temperature distribution. The area close La a heat source has a higher risk of air-borne contamination and imposes a harmful effect on occupants in that area. The predicted flow field, temperature results show good agreement with the measured data. As the results were compared with experimental data, the applicability of CFD was satisfactorily verified. Also, the CFD simulation can capture the natural convective flow features. If a CFD simulation is applied ventilation design with a heat source, An effective design will be attained. Further study is required to improve the accuracy of CFD simulation.

  • PDF

An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator (지반진동절연을 위한 공압제진대의 전달률 설계기법)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

Aerodynamic Approaches for Estimation of Waste Disease Spread in Pig Farm through Airborne Contaminants (양돈장의 소모성질병 확산 분석을 위한 현장 모니터링 및 공기유동학적 분석)

  • Seo, Il-Hwan;Lee, In-Bok;Moon, Oun-Kyung;Kwon, Kyeong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • Pig chronic wasting disease, including porcine reproductive and respiratory syndrome (PRRS) and postweaning multisystemic wasting syndrome (PMWS), have made a continuous economic damage in pig farms. Airborne spread of livestock viruses are an important spread factor which is difficult to analyze due to invisible airflow and limitation of measurement. The objective of this study is to analyze airborne disease spread between buildings in the experimental pig farm by means of field experiment and computational fluid dynamics (CFD). The field experiments were conducted to capture airborne virus using air sampler and teflon filter along multi points in the experimental pig farm. The samples were tested in terms of virus detection resulting in positive reaction for PRRS and PCV-2 viruses, which can be a firm evidence of airborne virus spread. The CFD simulation model was developed by considering complex topography, wind conditions, building arrangement, and ventilation systems and was used to analyze airborne virus spread according to different wind conditions. The CFD computed result showed a possibility of airborne virus spread via livestock aerosol from infected pig house to neighboring pig houses according to wind directions. The CFD simulation technique is expected to provide significant data for estimating and making a counterplan against airborne disease spread.

Satellite-derived estimates of interannual variability in recent oceanic $CO_2$ uptake

  • Park Geun-Ha;Lee Kitack
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.152-153
    • /
    • 2004
  • The growth rate of atmospheric $CO_2$ undergoes significant interannual variability, largely due to temporal variability of partitioning of $CO_2$ between terrestrial biosphere and ocean. In the present paper, as a follow-up to the work by Lee et al. [1], we estimated the year-to-year variability in net global air-sea $CO_2$ fluxes between 1982 and 2003 from observed changes in wind speed and estimated changes in ${\Delta}pCO_2$ Changes in $pCO_{25W}$ were inferred from global records of sea surface temperature (SST) anomalies and seasonally varying SST dependence of $pCO_{25W}$. The modeled interannual variability of $\pm0.2\;Pg\;C\;yr^{-1}\;(1{\sigma})$ from the present work is significantly smaller than the values deduced from atmospheric observations of $^{1.3}CO_2/CO_2$ in conjunction with different atmospheric transport models, but it is closer to the recent estimates inferred from a 3-D ocean biogeochemical model and atmospheric transport models constrained with extensive observations of atmospheric $CO_2$.

  • PDF