• Title/Summary/Keyword: thawing loss.

Search Result 129, Processing Time 0.029 seconds

Estimation of Weathering Characteristics of Sandstone and Andesite by Freeze-Thaw Test (동결융해시험에 의한 사암 및 안산암의 풍화특성 평가)

  • Kang, Seong-Seong;Kim, Jong-In;Obara, Yuzo;Hirata, Atsuo
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Variations of physical properties such as weight loss rate, wave velocity and uniaxial compressive strength after performing freeze-thaw cyclic test were measured in order to define weathering characteristics of sandstone and andesite. Weight change in specimens of the two rocks decreased with increasing the repetition number of freeze-thaw cyclic test. In particular, weight loss of andesite specimens was very irregular. P-wave velocity of sandstone specimens decreased more than 5%. On the other hand, P-wave velocity of andesite specimens do not vary up to 500 cycles and decreased more than 5% after 1000 cycles. This implies that the sandstone are easily weakened and loosened by weathering processes, while the andesite are relatively strong. In addition, the wave velocity changes of the andesite specimens coincident with the weight change. Uniaxial compressive strengths of the sandstone specimens slightly decreased at the early stage of the freezing-thawing cyclic test, then tended to be irregular after 64 cycles. In conclusion, the rock specimens showed smaller weight loss, less had lower strength reduction rate.

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

A New Protocol for Effective Cryopreservation of Human Embryonic Stem Cells by a Minimum Volume Cooling Method

  • Kim, Eun-Young;Lee, Keum-Sil;Shin, Hyun-Ah;Park, Sae-Young;Yoon, Ji-Yeon;Kil, Kwang-Soo;Lee, Young-Jae;Kim, Nam-Hyung;Chung, Kil-Saeng
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.98-98
    • /
    • 2003
  • Recently, human embryonic stem (hES) cells have become very important resources for ES cell basic research, cell replacement therapy, and other medical applications; thus, efficient cryopreservation methods for these cells are needed. This study examined whether a newly developed minimum volume cooling (MVC) vitrification method, which was tested through cryopreservation of sensitive bovine oocytes, can be used for freezing hES cells. Feeder-free cultured hES cell (MB03) colonies were mechanically dissected into several small clumps following enzymatic treatment. We compared the freezing efficiency of a slow-cooling method using a cryo-module (0.4-0.6C/min, 20-30 clumps/vial) and MVC vitrification using a modified 0.5-ml French mini-straw designated as a MVC straw (>$20,000{\circ}C$/min, 10 clumps/straw) After thawing, in vitro survival of hES cell clumps was higher for MVC-vitrified cells (80.8%, 97/120) than for slow-cooled cells (38.2%, 39/102). Further, the proliferation rate of surviving MVC-vitrified cells was similar to that of control hES cells from 2 weeks after thawing. In addition, vitrified-thawed hES cells demonstrated a normal karyotype, were positively immunostained for surface marker antibodies (AP, SSEA-4 and TRA-1-60) and the Oct-4 antibody, and could differentiate into all three embryonic germ layer cells in vitro. This result demonstrates that hES cell clumps can be successfully cryopreserved by a newly developed MVC vitrification method without loss of human cell characteristics.

  • PDF

A Comparative Study on Fresh and Frozen Embryo Transfer after Superovulation in Black Bengal Goats(Capra-hircus)

  • Mishra, O.P.;Pandey, J.N.;Gawande, P.G.
    • Journal of Embryo Transfer
    • /
    • v.17 no.2
    • /
    • pp.91-100
    • /
    • 2002
  • The experiment was divided into two phases. In phase-I fresh embryos were transferred and in Phase-II frozen embryos were transferred. Embryos were collected by using Dulbecco's phosphate buffered saline. In phase-I total of 65 ova were collected out of 107 ovulation in 18 goats. Recovery of ova was 60.74%, of which 51 (78.46%) was fertilized. Sixteen embryos were transferred to 10 recipient goats and kidding was observed in 6 goats, that produced 10 kids. Thus, 62.50% embryo survival and 60% kidding were achieved in phase-I. In phase-II of the experiment, 17 regular cyclic Black Bengal goats were used. The main purpose was to study the viability of caprine embryos after cryopreservation. In this phase the embryos were collected and frozen using Bio-cool freezers. A two step addition of cryoprotectants (5% glycerol and 10% glycerol) and three-step dilution of cryoprotectants with 1mole (M) sucrose was used. Embryos were preserved for 10 to 45 days. Out of 27 embryos preserved, 18 were recovered after freezing and thawing (37$^{\circ}C$ water bath) with 33.33% embryonic loss. Seventeen frozen and thawed embryos were transferred in 9 recipient goats, out of which kidding was observed in 6 goats and 7 kids were produced, giving a 66.66% kidding and embryo survival of 41.17%. The technique utilized for fresh and frozen embryo transfer can be successfully utilized to produce goats of superior genetic merits. The protocol used for addition of cryoprotectant, freezing, thawing and dilution was found suitable for caprine embryo freezing.

Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet (탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구)

  • Lim, Chisu;Park, Kwangpil;Lee, Jaejun;Lee, Byungsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.

Studies on Histological Changes in Marine Foods during Processing and Storage 2. Changes in muscular tissue of the eel, Anguilla japonica, by freezing storage (수산식품의 가공 및 저장중의 조직학적 변화에 관한 연구 2. 뱀장어 동결저장중의 조직변화)

  • SONG Dae-Jin;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 1982
  • Histological changes occurred by freezing storage and subsequent thawing, and changes of muscle fiber after heating and drying of the eel (Anguilla japonica) were observed under microscope . The results are as follows : (1) After one month of freezing storage the muscular tissue produced considerable number of extracellular and intracellular ice crystals. The sample stored at the temperature of $-40^{\circ}C$ produced ice crystals inside the muscle cells while sample stored at $-20^{\circ}C$, outside. (2) No changes were observed in the hypodermic fat after thawing regardless of storage temperature, while insufficient recovering of muscle cells were detected in the muscular tissue. Muscular tissues which have been stored $-20^{\circ}C$ showed severe change in shape due to dehydration. (3) Microscopic observation on muscle homogenate showed loss of transparency due to free-zing, disfiguration and contraction by drying and water seperation, and elasticity by heating.

  • PDF

Effects of Thawing Temperature on the Physicochemical and Sensory Properties of Frozen Pre-Rigor Beef Muscle

  • Lee, Eui-Soo;Jeon, Jong-Youn;Yu, Long-Hao;Choi, Ji-Hun;Han, Doo-Jeong;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.626-631
    • /
    • 2007
  • Pre-rigor bovine sternomandibularis muscles were frozen at 3 hr postmortem thawed at various temperatures (18, 2, and $-2^{\circ}C$), and then meat quality and sensory properties were compared with those in chilled muscle (control). The meat thawed at $18^{\circ}C$ had lower ultimate pH, water holding capacity, and sensory scores and higher muscle shortening, thaw drip loss, and shear values than those of the other samples. The samples thawed at $-2^{\circ}C$ had significantly lower muscle shortening and higher sensory scores in tenderness and juiciness than those thawed at 18 and $2^{\circ}C$. Muscle shortening, pH, WHC, shear values, and sensory properties were not significantly different between control and sample thawed at $-2^{\circ}C$. By holding at $-2^{\circ}C$, thaw shortening was prevented and tender meat comparable to the chilled meat was obtained. These results indicate that thaw shortening can be largely eliminated if the frozen pre-rigor muscle is thawed at $-2^{\circ}C$.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

The Comparison between Tanzanian Indigenous (Ufipa Breed) and Commercial Broiler (Ross Chicken) Meat on the Physicochemical Characteristics, Collagen and Nucleic Acid Contents

  • Mussa, Ngassa Julius;Kibonde, Suma Fahamu;Boonkum, Wuttigrai;Chankitisakul, Vibuntita
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.833-848
    • /
    • 2022
  • The objective of this study was to characterize the meat quality traits that affect the texture and savory taste of Ufipa indigenous chickens by comparing the proximate composition, physical characteristics, collagen, and nucleic acid contents with those of commercial broilers. It was found that Ufipa chicken breast and thigh meat had a higher protein content (p<0.05) than broiler chicken meat, whereas the fat content was lower (p<0.01). The moisture content of thigh meat was lower in Ufipa chicken meat than in broiler chicken meat (p<0.05). Regarding meat color, broiler chickens had considerably higher L* and b* than Ufipa chickens in both the breast and the thigh meat, except for a* (p<0.01). Regarding water holding capacity, Ufipa chicken breast exhibited higher drip loss but lower thawing and cooking losses than broiler chicken (p<0.01). In contrast, its thigh meat had a much lower drip and thawing losses but higher cooking losses (p<0.01). The shear force of Ufipa chickens' breasts and thighs was higher than that of broiler chickens (p<0.05), while the amount of total collagen in the thigh meat was higher than that of broiler chickens (p<0.05). Additionally, the inosine-5'-monophosphate (IMP) of Ufipa chicken breast and thigh meat was higher than that of broiler meat (p<0.05). The principal component analysis of meat quality traits provides a correlation between the proximate and physical-chemical prosperties of both breeds with some contrast. In conclusion, the present study provides information on healthy food with good-tasting Ufipa indigenous chickens, which offer a promising market due to consumers' preferences.

Quality Evaluation of Mackerel Fillets Stored under Different Conditions by Hyperspectral Imaging Analysis

  • Azfar Ismail;Jiwon Ryu;Dong-Gyun Yim;Ghiseok Kim;Sung-Su Kim;Hag Ju Lee;Cheorun Jo
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.840-858
    • /
    • 2023
  • This study was designed to compare the quality changes in mackerel fillets stored under different conditions by using hyperspectral imaging (HSI) techniques. Fillets packaged in vacuum were stored for six days under five different conditions: refrigerated at 4℃ (R group); iced at 5±3℃ (I group); kept at an ambient of 17±2℃ (A group); frozen at -18℃ for 24 h and thawed in a refrigerator at 4℃ for 5 h on the sampling day (FTR group); FTR thawed in tap water instead of thawing in a refrigerator (FTW group). The FTR group had the lowest total bacterial count, drip loss, 2-thiobarbituric acid reactive substances, volatile basic nitrogen, and texture profile analysis values among groups during the entire storage period (p<0.05). Scanning electron microscopy revealed that the FTR group had less damage, while the other groups had shrunken muscle tissues. HIS integrated with the partial least squares model yielded reliable and efficient results, with high R2cv values, for several quality parameters of the mackerel fillets. Overall, the FTR group, involving freezing and thawing in a refrigerator, appears to be the most favorable option for maintaining the quality of mackerel fillets, which could be practically implemented in the industry. HSI is a suitable and effective technique for determining the quality of mackerel fillets stored under different conditions.