• Title/Summary/Keyword: texture plane

Search Result 169, Processing Time 0.032 seconds

Properties of $SnO_2$ Thin Films Depending on Reaction Parameter (반응 변수에 따른 $SnO_2$ 박막의 특성)

  • Lee, Jeong-Hoon;Jang, Gun-Eik;Kim, Kyoung-Won;Son, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.356-357
    • /
    • 2006
  • Tin oxide thin films have been prepared on display glass from mixtures of dibutyl tin diacetate as a tin source, oxygen as an oxidant by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. The relationships between the properties of tin oxide thin films and various reaction parameters such as the deposition temperature, deposition time and the oxygen gas flow rate were studied. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and thinner thickness of deposited film led to decreasing grain size, surface roughness and electrical resistivity of the formed thin films at $325{\sim}425^{\circ}C$. The properties of fabricated $SnO_2$ films are highly changed with variations of substrate temperature and deposition time.

  • PDF

The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy (고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향)

  • Bae, Sangdae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels (0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

An Image Coding Algorithm for the Representation of the Set of the Zoom Images (Zoom 영상 표현을 위한 영상 코딩 알고리듬)

  • Jang, Bo-Hyeon;Kim, Do-Hyeon;Yang, Yeong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.498-508
    • /
    • 2001
  • In this paper, we propose an efficient coding algorithm for the zoom images to find the optimal depth and texture information. The proposed algorithm is the area-based method consisting of two consecutive steps, i) the depth extraction step and ii) the texture extraction step. The X-Y plane of the object space is divided into triangular patches and the depth value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block-based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the triangular patches is extracted from the zoom images by applying the affine transformation based disparity compensation method to the triangular patches with the depth value extracted from the first step. To improve the quality of image, the interpolation is peformed on the object space instead of the interpolation on the image plane.

  • PDF

An algorithm for the image improvement in the multi-view images coding (Multi-view 영상 코딩에서 영상 개선 알고리듬)

  • 김도현;최동준;양영일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.53-61
    • /
    • 1998
  • In this paper, we propose an efficient multi-view images coding algorithm to find the optimal depth and texture from the set of multi-view images. The proposed algorithm consists of two consecutive steps, i) the depth estraction step, and ii) the texture extraction step, comparedwith the traditional algorithem which finds the depth and texture concurrently. The X-Y plane of the normalized object space is divided into traingular paatches and the Z value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the traingular patches is extracted from the multi-view images by applying the affine transformation based disparity compensation method to the traingular pateches with the depth extracted from the first step. Experimental results show that the SNR(Singnal-to- Noise Ratio) of images enconded by our algorithm is better than that of images encoded by the traditional algorithm by the amount about 4dB for for the test sets of multi-view images called dragon, kid, city and santa.

  • PDF

Texture mapping of 3D game graphics - characteristics of hand painted texture (3D게임그래픽의 텍스쳐 매핑-손맵의 특징)

  • Sohn, Jong-Nam;Han, Tae-Woo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.331-336
    • /
    • 2015
  • The texture mapping used for the low-polygon models is one of the important workflows in the graphical representation of the 3D game. Only one hand painted texture is mapped on the surface of the 3D model and represents the color of the material and visual sense of touching by itself in that process. In the 3D game graphics, it is very important to visualize the textile sensation such as protruding and denting. It can be interpreted by the Gestalt Law to recognize a plane as a 3D sense of volume. Moreover, the concept of Affordance is necessary to recognize and perceive the textile sensation. It means visual recognizing of that relationship in the learning process. In this paper, The questionnaire survey targeting 3D game graphic designers is carried out. By analyzing the survey results, we suggest the important characteristic in the process of making hand painted texture.

GPU based Maximum Intensity Projection using Clipping Plane Re-rendering Method (절단면 재렌더링 기법을 이용한 GPU 기반 MIP 볼륨 렌더링)

  • Hong, In-Sil;Kye, Hee-Won;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.316-324
    • /
    • 2007
  • Maximum Intensity Projection (MIP) identifies patients' anatomical structures from MR or CT data sets. Recently, it becomes possible to generate MIP images with interactive speed by exploiting Graphics Processing Unit (GPU) even in large volume data sets. Generally, volume boundary plane is obliquely crossed with view-aligned texture plane in hardware-texture based volume rendering. Since the ray sampling distance is not increased at volume boundary in volume rendering, the aliasing problem occurs due to data loss. In this paper, we propose an efficient method to overcome this problem by Re-rendering volume boundary planes. Our method improves image quality to make dense distances between samples near volume boundary which is a high frequency area. Since it is only 6 clipping planes are additionally needed for Re-rendering, high quality rendering can be performed without sacrificing computational efficiency. Furthermore, our method couldbe applied to Minimum Intensity Projection (MinIP) volume rendering.

  • PDF

Effects of the Initial Texture on Formability in Aluminum Sheet Stretching (알루미늄 판재 스트래칭에서 초기 집합조직이 성형성에 미치는 영향)

  • Sim K. S.;Kim Y. I.;Lee Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.62-65
    • /
    • 2001
  • The effects of the initial torture of workpiece as well as the process conditions such as punch speed and lubrication on the formablity of sheet stretching are investigated by experiments. Two types of the initial textures of aluminum sheet plane strain compression torture and recrystallization texture are chosen since those are the most common in practice. Punch loads vs depth and thickness strain distributions along radial directions having the slope of $0^{\circ},\;45^{\circ},\;90^{\circ}$ with rolling directions are reported for hemishperical punch stretchings under a variety of process conditions.

  • PDF

Ultrasound Image Diagnosis using Texture Analysis (TEXTURE 분석을 이용한 초음파 화상의 진단)

  • Choi, Kwang-Cheol;Kim, Sun-Il;Lee, Doo-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 1992
  • A new approach to texture classification for quantitative ultrasound liver diagnosis using run difference matrix was developed. The run difference matrix comprised the gray level difference along with a distances. From this run difference matrix, we defined several vectors and parameters such as DOD, DGD, DAD vector, SHP, SMO, SMG, LDE, LDEL etc. Each parameter values calculated in fatty, cirrhotic, normal and chronic hepatitic liver images were plotted in a plane and we found that RDM method was more sensitive to small structural changes than the conventional run length method and showed improved classification ability between the diseases.

  • PDF