• Title/Summary/Keyword: texture integration

Search Result 42, Processing Time 0.027 seconds

Specification and Implementation of Projective Texturing Node in X3D

  • Kim, In-Kwon;Jang, Ho-Wook;Yoo, Kwan-Hee;Ha, Jong-Sung
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.1-5
    • /
    • 2016
  • Extensible 3D (X3D) is the ISO standard for defining 3D interactive web- and broadcast-based 3D content integrated with multimedia. With the advent of this integration of interactive 3D graphics into the web, users can easily produce 3D scenes within web contents. Even though there are diverse texture nodes in X3D, projective textures are not provided. We enable X3D to provide SingularProjectiveTexture and MultiProjectiveTexture nodes by materializing independent nodes of projector nodes for a singular projector and multi-projector. Our approach takes the creation of an independent projective texture node instead of Kamburelis's method, which requires inconvenient and duplicated specifications of two nodes, ImageTexture and Texture Coordinate.

Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method (3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측)

  • Jung, K.H.;Kim, D.K.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

GLIBP: Gradual Locality Integration of Binary Patterns for Scene Images Retrieval

  • Bougueroua, Salah;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.469-486
    • /
    • 2018
  • We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.

A Study on the Optimized Test Condition of Lock-in IR Thermography by Image Processing

  • Cho, Yong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2012
  • In this study, it was studies the utilization of LIT(lock-in infrared thermography) which can detect defects in welded parts of ship and offshore structures. Quantitative analysis was used through methods of filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified reliability in our methods by applying image processing techniques in order to normalize evaluations of comparative images that show phase difference. In addition, low to mid exposure showed good results whereas high exposure did not provide significant results in regards to intensity of light exposure on surface. Lock-in frequency was satisfactory around 0.1 Hz regardless of intensity of light source we had. In addition, having the integration time of thermography camera inversely proportional to intensity of exposed light source during the experiment allowed good outcome of results.

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

Direct Geo-referencing for Laser Mapping System

  • Kim, Seong-Baek;Lee, Seung-yong;Kim, Min-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.423-427
    • /
    • 2002
  • Contrary to the traditional text-based information, 4S(GIS,GNSS,SIIS,ITS) information can contribute to the citizen's welfare in upcoming era. Recently, GSIS(Geo-Spatial Information System) has been applied and stressed out in various fields. As analyzed the data from GSIS arena, the position information of objects and targets is crucial and critical. Therefore, several methods of getting and knowing position are proposed and developed. From this perspective, Position collection and processing are the heart of 4S technology. We develop 4S-Van that enables real-time acquisition of position and attribute information and accurate image data in remote site. In this study, the configuration of 4S-Van equipped with GPS, INS, CCD and eye-safe laser scanner is shown and the merits of DGPS/INS integration approach for geo-referencing is briefly discussed. The algorithm of DGPS/INS integration fur determination of six parameters of motion is eccential in the 4S-Van to avoid or simplify the complicated computation such as photogrammetric triangulation. 4S-Van has the application of Laser-Mobile Mapping System for three-dimensional data acquisition that merges the texture information from CCD camera. The technique is also applied in the fields of virtual reality, car navigation, computer games, planning and management, city transportation, mobile communication, etc.

  • PDF

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF

Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis (속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측)

  • Kim, D.K.;Kim, J.M.;Park, W.W.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

An Analysis of Femme Fatale Image's Costume Form in Paintings viewed from DeLong's Theory (DeLong 이론에 의한 회화속 팜므 파탈 이미지의 복식 형태 분석)

  • Kim, Bok-Hee;Nam, Yoon-Sook
    • Fashion & Textile Research Journal
    • /
    • v.13 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • This thesis, concerning Femme Fatale Images Costume Form in paintings viewed from DeLong's Theory, analyzed frequency and traits on the basis of DeLong's Form Observation Theory and drew out the result as followings. First, Costume Form was mostly open, whole, planer integration, rounded, and indeterminate. The styles were similar each other. Second, surface structure was expressed by line & shape, color, texture, and pattern of which color had the highest priority. Next, line & shape and texture had the priority in order. They were expressed through intereaction. Third, the traits of Costume Form were a similar color harmony or large light and darkness contrast+soft quality+interaction by ambiguous line & shape. So, Femme Fatale Image in paintings was expressed by soft and pure images and erotic images.

Finite Element Analysis for Rate-Independent Crystal Plasticity Model (속도 독립성 결정소성모델의 유한요소해석)

  • Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • Rate-independent crystal plasticity model suffers from the non-uniqueness of activated slip systems and the determination of the shear slip rates on the active slip systems. In this paper, a time-integration algorithm which circumvents the problem of the multiplicity of the slip systems was developed and implemented into the user subroutine VUMAT of a commercial finite element program ABAQUS. The magnitude of the slip shears on the active slip systems in f.c.c Cu single crystal aligned with the specific crystallographic orientation was investigated to validate our solution procedure. Also, texture developments under various deformation modes such as simple compression, simple tension and plane strain compression were compared with the results of the rate-dependent model by using the rate-independent crystal plasticity model. The computation time employing the rate-independent model is much more reduced than the those of the rate-dependent model.