• Title/Summary/Keyword: text image

Search Result 981, Processing Time 0.037 seconds

Using Context Information to Improve Retrieval Accuracy in Content-Based Image Retrieval Systems

  • Hejazi, Mahmoud R.;Woo, Woon-Tack;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.926-930
    • /
    • 2006
  • Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.

  • PDF

Skew Estimation and Correction in Text Images using Shape Moments (형태 모멘트를 이용한 텍스트 이미지 경사 측정 및 교정)

  • Choo, Moon-Won;Chin, Seong-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • In this paper efficient skew estimation and correction approaches are proposed. To detect the skew of text images, Hough transform using the perpendicular angle view property and shape moments are peformed. The resultant primary text skew angle is used to align the original text. The performance evaluations of the proposed methods with respect to running time are shown.

  • PDF

An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

  • Xiang, Yiming;Zhuang, Yi;Jiang, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3578-3593
    • /
    • 2017
  • Given two collections of objects that carry both spatial and textual information in the form of tags, a $\text\underline{S}patio$-$\text\underline{T}extual$-based object $\text\underline{S}imilarity$ $\text\underline{JOIN}$ (ST-SJOIN) retrieves the pairs of objects that are textually similar and spatially close. In this paper, we have proposed a block index-based approach called BIST-JOIN to facilitate the efficient ST-SJOIN processing. In this approach, a dual-feature distance plane (DFDP) is first partitioned into some blocks based on four segmentation schemes, and the ST-SJOIN is then transformed into searching the object pairs falling in some affected blocks in the DFDP. Extensive experiments on real and synthetic datasets demonstrate that our proposed join method outperforms the state-of-the-art solutions.

Design for Creating Full-Text Database of Korean Dissertation (대학도서관의 학위논문 전문DB구축방안)

  • 방준필
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 1998
  • The purpose of this study is to design the solution for creating full-text database of Korean dissertaion, After considering file formats for text based and image based database, Viewer, Search, Copy Right, Abstracts and Indexes, situation of Korea University Library, decided the principles of creating database. And suggested the design to produce the database for Korea University Library, that is easy to get file format conversion in case of the introducing new technology for the future.

  • PDF

Text-to-Face Generation Using Multi-Scale Gradients Conditional Generative Adversarial Networks (다중 스케일 그라디언트 조건부 적대적 생성 신경망을 활용한 문장 기반 영상 생성 기법)

  • Bui, Nguyen P.;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.764-767
    • /
    • 2021
  • While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.

Text Region Verification in Natural Scene Images using Multi-resolution Wavelet Transform and Support Vector Machine (다해상도 웨이블릿 변환과 써포트 벡터 머신을 이용한 자연영상에서의 문자 영역 검증)

  • Bae Kyungsook;Choi Youngwoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.667-674
    • /
    • 2004
  • Extraction of texts from images is a fundamental and important problem to understand the images. This paper suggests a text region verification method by statistical means of stroke features of the characters. The method extracts 36 dimensional features from $16\times16$sized text and non-text images using wavelet transform - these 36 dimensional features express stroke and direction of characters - and select 12 sub-features out of 36 dimensional features which yield adequate separation between classes. After selecting the features, SVM trains the selected features. For the verification of the text region, each $16\times16$image block is scanned and classified as text or non-text. Then, the text region is finally decided as text region or non-text region. The proposed method is able to verify text regions which can hardly be distin guished.

Text Region Detection using Edge and Regional Minima/Maxima Transformation from Natural Scene Images (에지 및 국부적 최소/최대 변환을 이용한 자연 이미지로부터 텍스트 영역 검출)

  • Park, Jong-Cheon;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.358-363
    • /
    • 2009
  • Text region detection from the natural scene images used in a variety of applications, many research are needed in this field. Recent research methods is to detect the text region using various algorithm which it is combination of edge based and connected component based. Therefore, this paper proposes an text region detection using edge and regional minima/maxima transformation algorithm from natural scene images, and then detect the connected components of edge and regional minima/maxima, labeling edge and regional minima/maxima connected components. Analysis the labeled regions and then detect a text candidate regions, each of detected text candidates combined and create a single text candidate image, Final text region validated by comparing the similarity and adjacency of individual characters, and then as the final text regions are detected. As the results of experiments, proposed algorithm improved the correctness of text regions detection using combined edge and regional minima/maxima connected components detection methods.

An Embedded Text Index System for Mass Flash Memory (대용량 플래시 메모리를 위한 임베디드 텍스트 인덱스 시스템)

  • Yun, Sang-Hun;Cho, Haeng-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • Flash memory has the advantages of nonvolatile, low power consumption, light weight, and high endurance. This enables the flash memory to be utilized as a storage of mobile computing device such as PMP(Portable Multimedia Player). Potable device with a mass flash memory can store various multimedia data such as video, audio, or image. Typical index systems for mobile computer are inefficient to search a form of text like lyric or title. In this paper, we propose a new text index system, named EMTEX(Embedded Text Index). EMTEX has the following salient features. First, it uses a compression algorithm for embedded system. Second, if a new insert or delete operation is executed on the base table. EMTEX updates the text index immediately. Third, EMTEX considers the characteristics of flash memory to design insert, delete, and rebuild operations on the text index. Finally, EMTEX is executed as an upper layer of DBMS. Therefore, it is independent of the underlying DBMS. We evaluate the performance of EMTEX. The Experiment results show that EMTEX can outperform th conventional index systems such as Oracle Text and FT3.

Document Layout Analysis Using Coarse/Fine Strategy (Coarse/fine 전략을 이용한 문서 구조 분석)

  • 박동열;곽희규;김수형
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.198-201
    • /
    • 2000
  • We propose a method for analyzing the document structure. This method consists of two processes, segmentation and classification. The segmentation first divides a low resolution image, and then finely splits the original document image using projection profiles. The classification deterimines each segmented region as text, line, table or image. An experiment with 238 documents images shows that the segmentation accuracy is 99.1% and the classification accuracy is 97.3%.

  • PDF

Comparison of the Differences in AI-Generated Images Using Midjourney and Stable Diffusion (Midjourney와 Stable Diffusion을 이용한 AI 생성 이미지의 차이 비교)

  • Linh Bui Duong Hoai;Kang-Hee Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.563-564
    • /
    • 2023
  • Midjourney and Stable Diffusion are two popular AI-generated image programs nowadays. With AI's outstanding image-generation capabilities, everyone can create artistic paintings in just a few minutes. Therefore, "Comparison of differences between AI-generated images using Midjourney and Stable Diffusion" will help see each program's advantages and assist the users in identifying the tool suitable for their needs.

  • PDF