
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, Jul. 2017 3578
Copyright ⓒ2017 KSII

An Efficient Block Index Scheme with
Segmentation for Spatio-Textual Similarity

Join

Yiming Xiang1, Yi Zhuang1*, Nan Jiang2
1College of Computer & Information Engineering, Zhejiang Gongshang University, P.R.China

[e-mail: futuretech@mail.zjgsu.edu.cn, zhuang@zjgsu.edu.cn]
2 Hangzhou First People’s Hospital, Hangzhou, P.R.China

 [e-mail: zy158cn@gmail.com]

*Corresponding author: Yi Zhuang

Received September 24, 2016; revised February 20, 2017; accepted March 29, 2017;

published July 31, 2017

Abstract

Given two collections of objects that carry both spatial and textual information in the form of
tags, a Spatio-Textual-based object Similarity JOIN (ST-SJOIN) retrieves the pairs of objects
that are textually similar and spatially close. In this paper, we have proposed a block
index-based approach called BIST-JOIN to facilitate the efficient ST-SJOIN processing. In
this approach, a dual-feature distance plane (DFDP) is first partitioned into some blocks
based on four segmentation schemes, and the ST-SJOIN is then transformed into searching
the object pairs falling in some affected blocks in the DFDP. Extensive experiments on real
and synthetic datasets demonstrate that our proposed join method outperforms the state-of-
the-art solutions.

Keywords: join rectangle, similarity join, near-duplicate image detection

https://doi.org/10.3837/tiis.2017.07.015 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3579

1. Introduction

With the increasing complexity of the data representation over the years, data can be easily
‘tagged’ with different types of information, such as keywords and spatial locations, etc. For
example, webpages contain keywords and they may also be associated to locations; photo-
graphs in photo-sharing services, such as Flickr, are assigned descriptive tags and spatial
locations [1, 2]; persons in social networks and customer databases have profile entries
(keywords) and addresses. The enrichment of objects with multi-source descriptive informa-
tion allows for more complex queries and analysis over the data.

As one of the important object queries, a Spatio-Textual-based object Similarity JOIN
(ST-SJOIN) has played a critical role in many applications. Here are two representative
examples:

● Near-identical object detection. One of the most important applications of the
ST-SJOIN is near-identical object detection. For example, consider a database of
spatially and textually tagged images (e.g., Flickr). Finding similar image pairs based
solely on their tag similarity may not be sufficient, if the tags are not location
dependent. Thus, an image tagged as ‘house’ is textually similar to other house photos
around the world, but can only be actually similar to photographs of the same house
(taken from nearby locations). A spatio-textual (self) join can be used to identify pairs
of images showing the same subject.

● Personalized recommendation. Another important application is a personalized
recommendation. For example, a user wants to obtain some objects for personal needs.
That is, the returned objects need to be textually similar to the preference and spatial
closely to the preference location. So, the ST-SJOIN of the query object with user
preferences and the objects in a dataset can return some pairs of objects that satisfy
users’ needs.

 In this paper, we identify and solve the problem of the ST-SJOIN for objects that is to
retrieve a pair of objects of which the textual or spatial information are similar. Formally,
given two collections of objects R and S that carry both textual and spatial information, the
ST-SJOIN retrieves the subset J of R×S, such that for every (r,s)∈J, two following criteria
have to be satisfied:
― r is spatially close to s, based on a distance threshold (i.e., dis(r,s)≤θS, where dist

denotes distance between locations),
― r is textually similar to s, based on a similarity threshold θT (i.e., tSim(r,s)≤θT, where

tSim denotes textual similarity).
Suppose that there are two object sets R and S. There are six objects (r1 to r6) in R and four

objects (s1 and s4) in S are joined based on their textual content (T) and spatial locations (S).
Assuming qualifying pairs should have textual similarity tSim at least θT=0.5 and spatial
distance dist at most θS=0.4, the result of the join is (r3, s1), (r1, s3) and (r6, s4).

To support efficient ST-SJOIN processing, in this paper, we have proposed a block index
approach called BIST-JOIN. In particular, the object pairs in the high-dimensional feature
spaces are first mapped into a dual-feature distance plane (DFDP), and then the ST-SJOIN is
transformed into searching the object pairs falling in the join rectangle (JR) in this plane
without sets intersection processing. To further improve the join efficiency, we also propose
a unified index structure called the block index.

The primary contributions of this paper are as follows:
1. We present a block index-based method (BIST-JOIN) to facilitate the efficient spatio-

textual join processing.
2. We design four segmentation schemes to partition the DFDP into several blocks.

3580 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

3. We perform extensive experiments on real and synthetic datasets to evaluate the
efficiency of our proposed object similarity join algorithm.

The rest of this paper is organized as follows. In Section 2, we provide a background of
our work. Then in Section 3, we give the problem formulation of this work. In Section 4, we
introduce an efficient similarity join algorithms based on spatial and textual features. In
Section 5, we report the results of extensive experiments that are designed to evaluate the
efficiency of the proposed approach. Finally, we conclude in the final section.

2. Related Work
Similarity join processing is a long standing yet challenging research topic that has attracted
much attention in several research communities. Existing work includes spatial join [6, 7,
14], textual join [3, 12, 13, 14] and set-similarity join [3, 5, 9, 13], etc.

For spatial joins, efficient algorithms [6] have been developed for data indexed by R-trees.
The ST-SJOIN [15] extends the ε-distance join [7]. Given two spatial datasets R and S, the
ε-distance join finds the pairs (r, s) such that r∈R, s∈S, and distl(r, s)≤ε. The ε-distance join
processing is similarly to a spatial intersection join: the R-trees that index R and S are con-
currently traversed by recursively following pairs of entries for which the minimal bounding
rectangles (MBR) have minimum distance at most ε. Further, Chan [7] proposed techniques
for minimizing the distance computation cost between objects and MBRs.

For set-similarity join, given a collection D of set-valued data, the problem is to find pairs
(x, y) of sets in D, such that simt(x, y)≥θ, where simt(.,.) is a similarity function and θ is a
threshold. The main application of set-similarity joins is near-duplicate object detection [9].
Set-similarity joins can also be used to facilitate string matching. For example, Gravano et al.
[10] showed that the edit distance between two strings can be bounded by set-similarity
measures defined on two sets of q-grams, which approximate the strings. The prevalent
approach in the past is to solve an approximate version of the problem, i.e., finding most of,
if not all, similar objects. Several synopsis-based schemes have been proposed and widely
adopted [16, 17, 19].

A recent trend is to investigate algorithms that compute the similarity join exactly. Recent
advances include inverted index-based methods [11], prefix filtering-based methods [5, 18],
and signature-based methods [3]. Among them, the recently proposed All-Pairs algorithm [5]
has been demonstrated to be highly efficient and scalable to tens of millions of records.
Nevertheless, the All-Pairs algorithm, as well as other prefix filtering-based methods, usually
generates a huge amount of candidate pairs, all of which need to be verified by the similarity
function. Computing set-similarity joins based on inverted files [14] was first proposed in
[11]: for each object x, the inverted lists that correspond to x’s elements are scanned to
accumulate the similarity between x and all other objects. Several optimizations over this
approach are proposed, including scanning only a smaller subset of x’s lists and performing a
single pass over the data that constructs the inverted index and computes the join result at the
same time. Chaudhuri et al. [8] introduced an efficient filter-refinement framework for set-
similarity joins, based on the observation that for two sets x, y to satisfy sim(x,y)≥t, a
necessary condition is that the prefixes of x and y should have at least some minimum
overlap. Arasu et al. [3] showed that this prefix-based filtering is one of the possible
summary schemes that one could use as necessary conditions and provided alternative
schemes with theoretical bounds on their effectiveness. Bayardo et al. [5] proposed an
efficient framework for evaluating set-similarity joins, which minimizes the necessary
elements to add in the inverted file, during join evaluation, based on pre-computed bounds
on the element weights in the sets and appropriate orderings for the domain of set elements
and the database. Xiao et al. [13] optimized this method by integrating positional filtering

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3581

into the All-Pairs algorithm [5], which is called the ppjoin. Based on it, they further
employed a suffix filtering to the ppjoin (i.e., ppjoin+) which is complementary to the
existing prefix filtering method and can work on tokens both in the prefixes and the suffixes.
The technique was later extended to compute top-k set-similarity joins [12]. Deng et al. [21]
proposed an efficient partition based method for exact set similarity joins. Hu et al. [22]
proposed a top-k spatio-textual similarity join scheme called the TOPK-STJOIN, which is an
improvement of the ST-SJOIN [15]. Li et al. [23] proposed an efficient similarity search and
join on multi-attribute data. Tao et al. [24] presented an efficient top-k SimRank-based
similarity join. Deng et al. [27] devised a pivotal prefix based filtering algorithm for string
similarity search. Shang et al. [26] presented a knowledge-aware similarity join. Ta et al. [27]
presented a signature-based trajectory similarity join.

3. Problem Formulation
First we briefly summarize the notations that will be used in the rest of the paper in Table 1.

Table 1. Summary of frequent symbols

Symbol Description
R, S two object sets

T a tag set
Oi the i-th object
|●| the number of objects in ●
 • the integral part of ●
k the number of the segmentation for each feature

dist(Ii,Ij) spatial distance between two objects

tSim(Ii,Ij)
textual similarity distance between two objects based on Jacard

distance
θT a join threshold for textual feature
θS a join threshold for spatial feature

Definition 1 (SPATIO-TEXTUAL OBJECT). A spatio-textual object Oi can be modeled as a

triplet:
 (1)

where i is the ID number of Oi, T refers to the tag set assigned by users to Oi, and S refers to
the spatial information of Oi.

Definition 2 (TEXTUAL SIMILARITY DISTANCE). For each pair of objects (i.e, Oi and Oj),
their textual similarity distance (tSim) can be derived in Eq.(2):

 (2)

where T(Oi) is the tags assigned for Oi.

Definition 3 (SPATIAL DISTANCE). For each pair of objects (i.e., Oi and Oj), their spatial
distance (dist) can be derived in Eq.(3):

 (3)

where Oi.x, Oj.x, Oi.y and Oj.y are the latitude and longitude axis values of Oi and Oj ,
respectively.

For illustration, based on definition 3, a normalized spatial distance is proposed in the

3582 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

range of [0, 1].

Definition 4 (NORMALIZED SPATIAL DISTANCE). Given a spatial distance: dist(Oi,Oj), its
corresponding normalized spatial distance (Dist) can be defined in Eq.(4):

 (4)

such that Dist(Oi, Oj)∈[0,1], where dist(Oi,Oj) is defined in Eq.(3)

Definition 5 (SPATIO-TEXTUAL SIMILARITY JOIN). Given two object sets: R and S, their
spatio-textual similarity join is a set, which can be formally represented as:

 (5)

4. The BIST-JOIN Algorithm
For the ST-SJOIN processing, in this section, we propose a block index-based ST-JOIN
(BIST-JOIN) method.

4.1 Motivations
As the ST-SJOIN processing involves CPU and I/O intensive intersection operation, the join
performance can be significantly improved if such intersection processing can be reduced or
avoided.

Definition 6 (JOIN RECTANGLE). A join rectangle is a rectangle in which two axis
correspond to two features, respectively; and the maximal value of each feature distance are
two threshold values (i.e., θT and θS), respectively. Formally denoted as JR(θT,θS).

Based on Definition 6, as shown in Fig. 1, given the two join thresholds (i.e., θT and θS),
the ST-SJOIN problem can be transformed to a new problem of obtaining the object pairs
falling in the corresponding JR(θT,θS). Compared with the above two methods, the object
pairs in the JR can be easily and efficiently obtained without much CPU-intensive
intersection operation.

How to effectively and efficiently obtain the object pairs in the JR is a challenging issue. In
this subsection, we propose a Block Index-based ST-JOIN algorithm called the BIST-JOIN.
The basic idea behind it is to segment the range of each feature distance into sub-ranges. In
other words, the DFDP is partitioned into blocks in which there exists the corresponding
object pairs. The ST-SJOIN processing is then transformed into searching for the object pairs
in the affected blocks of the JR(θT,θS) in the DFDP.

Dist

tSim

1

1

1 2

1

2

3

3
Join rectangle

Tθ

Sθ

Dual-feature distance plane

4

4
Fig. 1. Join Rectangle of a ST-SJOIN

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3583

4.2 Segmentation Schemes
In this subsection, we introduce four segmentation schemes: 1) equal-width segmentation, 2)
equal-quantity segmentation, 3) user-adaptive segmentation, and 4) hybrid segmentation.

● Equal-Width Segmentation

 In the equal-width segmentation-based approach, as shown in Fig. 2(a), we equally
segment the range [0, 1] into k segments. For the two features, the number of the blocks is k2.
Due to data skew, the number of object pairs falling in each block is different.

● Equal-Quantity Segmentation

The equal-width segmentation-based approach is more suitable to the feature data that are
uniformly distributed. In real applications, the data distribution, however, is skew to some

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11 21 31

12 22

43

14 24 34

13

41

32 42

23 33

44

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11
21

31

12

22

32

13
23

33

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11 21 31

13 33
14

23
34

Equi-width or Equi-quantity segmentation User adaptive segmentation

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11 21

12
22

13

31 41

32 42

23 33 43
15

24
25 35

12 3222

(a). Equal-width-based (b). Equal-quantity-based (c). User adaptive-based (d). hybrid-based

Fig. 2. An example of the four segmentation schemes

extent. So, this segmentation approach cannot keep a balanced distribution of the number of
object pairs in each block. The CPU cost in the refinement process would thus be larger in
this case.

To address this problem, we propose an equal-quantity segmentation scheme that enables
the number of object pairs in each block to be equal. Specifically, in Fig. 2(b), the object
pairs in the feature distance space are first partitioned into k textual segments in terms of the
textual distance in which the number of the object pairs in each segment is equal. For each
textual segment, its corresponding object pairs are partitioned into k spatial segments in
terms of the spatial distance in which the number of the object pairs in each segment is
equal.

● User-Adaptive Segmentation

The above two segmentation schemes are based on the distributions of the feature
distances themselves. The ST-SJOIN, however, involves users’ participation and interactions
such as thresholds setting, etc. Different users may choose different thresholds (i.e., θT and
θS), which motivates us to segment the feature distance based on the learning of the
frequencies of the user–provided thresholds. That is to say, for each feature, the number of
segments for a certain range is larger if the user-given threshold is among the range
frequently. Based on the above motivations, we present a user-adaptive segmentation
scheme by which the computation costs in the refinement processing can be reduced
effectively from a user’s perspective.

Specifically, given t users, assume that each user (Ui) has two thresholds for the object join,
which are denoted as and .

3584 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

Definition 7 (USER THRESHOLD HISTOGRAM). Given a feature, its corresponding user
threshold histogram (UTH) can be modeled as a vector:

UTH = [<Ran1, Per1>, <Ran2, Per2>, …, <Rank, Perk>] (6)
where Rani is the i-th sampling range, Peri is the ratio of the number of thresholds fall in the
range Rani to that of all the thresholds, formally denoted as: .

Based on Definition 7, assume that the total number of the segments is k, then for each
range (i.e., Rani), the number of segments in this range can be approximately represented as:

.

● Hybrid Segmentation

Based on the above three segmentation schemes, we propose a hybrid segmentation one
that takes advantage of the above three ones.

Fig. 2(d) shows an example of the hybrid segmentation. First, the DFDP in this figure is
segmented into 4 blocks by the equal-quantity approach. Then, for each block, it can be
further segmented according to the frequency of the users’ given thresholds falling in the
block.

4.3 The Index Scheme
Based on the above four segmentation schemes, the DFDP is partitioned into several blocks
through segmenting the two feature distances. The block ID (BID) can be represented in
Eq.(7):

 (7)
where

― sIDT and sIDS are segment IDs for the two features respectively, where they are
integers;

― α is a large constant which is used to stretch the bounding segment ID of the textual
features (i.e, sIDT).

Definition 8 (BOUNDING SEGMENT ID). Given a JR(θT,θS), its corresponding bounding
segment ID (bsID)s for the two features are derived as follows:

 (8)

where bsIDT is the bsID for textual feature, bsIDS is the bsID for spatial feature, is the
i-th subrange for the textual distance, and is the j-th subrange for the spatial distance.

Definition 9 (BOUNDING BLOCK). Given a JR, its corresponding bounding block is a
rectangle for which at least one of the segment IDs for the two features is bsIDT or bsIDS.

Definition 10 (INNER BLOCK). Given a JR, its corresponding inner block is a rectangle for
which all the segment IDs for the two features are less than bsIDT and bsIDS.

Fig. 3(a) shows an example of the DFDP in which the two feature distances (i.e., Dist and
tMax) are divided into four segmentations, respectively. Therefore, the 16 blocks are
obtained in the DFDP. Given a JR represented by a grey rectangle, there exist six bounding
blocks and six inner blocks.

Definition 11 (PIVOT BOUNDING BLOCK). A pivot bounding block (PBB) is a bounding
block whose BIDP is derived in Eq.(9):

 (9)
where bsIDT and bsIDS are equal to that of in Eq.(8).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3585

 Based on Definition 11, the PBBs in Fig. 3 are represented by the blue rectangles. Next,
given a JR, we need to identify its corresponding affected inner and bounding blocks in
terms of the four cases as described below.

● Equal-width segmentation scheme

For the equal-width segmentation scheme, it is clear that the size of each block is equal.
Based on Definition 9, in Fig. 3(a), given a JR(θT, θS), its corresponding PBB can be identi-
fied with the ID number defined in Eq.(9). So the affected inner blocks are 11, 21, 31, 12, 22,
and 32, and the affected bounding blocks are 13, 23, 33, 43, 42, and 41.

● Equal-quantity segmentation scheme

Different from the equal-width segmentation scheme, for the equal-quantity segmentation

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11 21 31

12 22

43

14 24 34

13

41

32 42

23 33

44

PBB or PVRB

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11
21

31

12

22

32

13
23

33

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11 21 31

13 33
14

23
34

Equal-width or Equal-quantity segmentation Reference virtual blockUser adaptive segmentation

Dist

tSim0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

11 21

12
22

13

31 41

32 42

23 33 43
15

24
25 35

12 3222

(a). Equal-width-based (b). Equal-quantity-based (c). User adaptive-based (d). hybrid

Fig. 3. Four segmentation schemes

scheme, as shown in Fig. 3(b), in most cases, the size of each block represented as blue line
rectangle is different. So given a join rectangle represented by a grey rectangle in this figure,
it is not trivial to efficiently identify the corresponding bounding blocks and inner ones, as
the identification of the bounding blocks involves expensive distance computation especially
for the large number of blocks.

To reduce the time cost, we propose a virtual reference block (VRB) approach in which the
DFDP is equally partitioned into some blocks called VRBs represented by red dash
rectangles in Fig. 3(b). For each VRB, its corresponding candidate bounding blocks and inner
ones are obtained previously. Given a JR, similar to the first case (i.e., equal-width), its pivot
virtual reference block (PVRB) represented by a blue rectangle can be easily identified. As
the corresponding candidate bounding and inner blocks of each PVRB has already been
obtained in the preprocessing step, so for the PVRB in Fig. 3(b), the bounding blocks become
12, 13, 23, 33, 32, and 31, respectively. The inner ones are 11, 22, and 21.
● User adaptive segmentation scheme

For user adaptive segmentation, similar to the second case, given a JR in Fig. 3(c), we use
the above VRB approach to identify the affected bounding blocks (i.e., 12, 13, 14, 21, 22, 23,
24, 31, 32, 33, and 34) and inner one (i.e., 11).
● Hybrid segmentation scheme

In the hybrid segmentation, as shown in Fig. 3(d), assume that DFDP is first partitioned
into some blocks called parent blocks using the equal-width or equal-quantity approach.
Then, for each parent block, according to the user adaptive scheme, it can be further
partitioned into some smaller blocks called child blocks.

Given a JR, the affected bounding child blocks are 12, 22, 32, 21, and 31, and the affected
inner ones are 11.

3586 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

Based on the above descriptions, for any JR, its corresponding bounding blocks and inner
ones have been obtained. Fig. 4 shows a block index structure composed of three levels: 1)
PBB/PVRB level, 2) Block level, and 3) Data level.

PBB/PVRB level. For the PBB/PVRB level, as shown in the left part of Fig. 4, the ID
numbers of the all PBB/PVRBs are indexed by a B-Tree. The leaf node in the B-Tree consists
of two elements: <PID, ptr>, where PID refers to the pivot bounding block ID and ptr refers
to a pointer that is pointed to the related inner and bounding blocks;

The block level. For the block level shown in the middle part of Fig. 4, for each PBB/PVRB,
its affected blocks (i.e., bounding blocks and inner blocks) are previously identified and
organized by a linked list. For the node in the linked list, it can be represented by a four-tuple
lnode:= <BID, ptr, flag, path>, where BID is the ID number of the affected block shown in
Eq.(7), ptr is a pointer to the next node, flag=1 means the node is a bounding block, else the
inner one, and path refers to the file path of the corresponding block.

B
-T

re
e

11

33 11 13 23

1 0 0

32

12

33

0

11

13

23

31

33

Block level Data levelPBB/PVRB level

12

21

32

22

Inner blocks Bounding blocks

22

1

11

0

1

12

Dist

tSim

1

1

1 2

1

2

3

3

Join
rectangle

Tθ

Sθ

Dual-feature distance plane

4

4

Bounding
blocks

Inner
blocks

Fig. 4. An example of the BIST index structure Fig. 5. Join processing

It is worth mentioning that the object pairs in the inner blocks can be part of the result

object pairs, while the object pairs in the bounding ones need further refinement processing
with the criteria of the thresholds.

The data level. For the data level shown in the right part of Fig. 4, the object pairs in each
block are recorded and saved by a file whose filename is the block ID (i.e., BID). For the
candidate object pairs in the affected inner blocks, they can be as part of the result object
pairs without any refinement processing. But for the candidate object pairs in affected
bounding blocks, the distances of all object pairs need to be sequentially calculated for the
refinement processing to verify if they lay in the join block.

Algorithm 1 summarizes the BIST index construction procedure.

Algorithm 1. Index construction
Input: two object set: R and S;
Output: BIST index;
1. the DFDP is partitioned into blocks according to a segmentation scheme;
2. for each block/PVRB do
3. the block ID in Eq.(7) is inserted into a B-Tree;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3587

4. end for
5. for each leaf node in the B-tree do
6. its corresponding candidate blocks(i.e., bounding blocks and inner blocks) are

organized by a linked list;
7. for each node in the linked list do
8. the corresponding object pairs in the block is pointed by this node;
9. end for
10. end for

4.4 The Join Algorithm
Algorithm 2 summarizes the whole join processing with two steps: 1) filtering and 2)
refinement.

● The filtering step

In the filtering step, as shown in Fig. 5, given a join rectangle JR(θT, θS) represented by a
blue one, its corresponding inner and bounding blocks are first identified. The object pairs in
the inner blocks represented by red grid rectangles in this figure are obtained as part of the
result object ones.

● The refinement step

Once the candidate result object pairs in the bounding blocks are obtained, in the
refinement step, they need to be further calculated in terms of other feature(s) with the
restriction of the corresponding thresholds. Finally, the answer object pairs are obtained.

Algorithm 2. Block Index-based ST-JOIN
Input: the join thresholds;
Output: the joined object pairs;
1. the PBB/PVRB is first identified according to the two thresholds which

corresponds to the inner and bounding blocks;
2. the object pairs in the inner blocks are obtained as part of the result object

ones;
3. for the object pairs in each bounding block do
4. the similarity of each object pair is further calculated in terms of other

feature(s) with the restriction of the corresponding thresholds.
5. end for
6. the final answer object pairs are obtained.

5. Experimental Evaluation

5.1 Experimental Setup
In this section, we present an extensive performance study on real and synthetic datasets to
evaluate the efficiency of our proposed join methods.

The datasets in the experiment can be composed of two real datasets and one synthetic
dataset, which are described below:
1) The Flickr data set. The first social image data set we used is from NUS-WIDE [28] in

which 260k objects are downloaded from the Flickr.com. We used 100k objects in which
their textual and spatial features are extracted.

2) The Panoramio data set. The second social image data set is from the Panoramio.com
[29], which consists of about 50k geo-tagged objects. Similar to the first dataset, the two
features of the geo-tagged objects are extracted.

3588 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

3) Synthetic data set. We generated 100k synthetic feature data. Different from the real
datasets, the tag and spatial features are generated randomly which are uniformly
distributed.

We have implemented the four join methods: our BIST-JOIN approach (see Section 4); the
PPJoin+ method [14], the ST-SJOIN method [15], and the TOPK-STJOIN method [22] in the
C++ language. The index page size of B-tree is set to 4096 bytes. All the experiments are
run on an Intel i5-2400 CPU processor at 3.10GHz with 4 gigabytes memory. In our
evaluation, we use the total response time as the performance metric.

5.2 Effect of Data Size
The first experiment tests the effect of data size on the join efficiency. For each type of data
set, the numbers of the object pairs are 100×108, 20×108, and 100×108, respectively. The
segmentation granularity for the BIST-JOIN is 32×32×32.

We have compared the four join methods. As shown in Fig. 6, with the increase of the
number of object pairs, the total response time of the baseline approach is increasing
exponentially since it involves an I/O and CPU intensive sequential scan of the object pairs.
The other three methods increase linearly, and the BIST-JOIN method is superior to that of
other three ones. Compared with the BIST-JOIN, the other three competitors (i.e., the
PP-Join, the ST-SJOIN and TOPK-STJOIN) involve the refinements of the candidate object
pairs which are I/O and CPU intensive. The BIST-JOIN method, however, can obtain the
candidate object pairs directly without any intersection processing. It is interesting to notice
that when the number of the object pairs is small, the BIST-JOIN is slightly better than the
TOPK-STJOIN. As the number of the object pairs increases, however, the performance gap
between the two methods becomes larger. This is because: 1) for the TOPK-STJOIN, when
the number of the objects increases, the computation costs for searching the inverted list,
matching the tokens and verification processing of the candidate object pairs are larger than
the BIST-JOIN; 2) although the pruning capacity of the TOPK-STJOIN outperforms the
state-of-the-art methods, the number of the candidate object pairs obtained by the TOPK-
STJOIN may be larger than that of the candidate ones of the BIST-JOIN at a reasonable
segmentation granularity (e.g., 32×32×32).

25 50 75 100

300

600

900

1200

1500

1800

2100

Re
sp

on
se

 T
im

e(
Se

c.
)

Number of Object Pairs(×108)

 BIST-JOIN
 PPJoin+
 TOPK-STJOIN
 ST-SJOIN

 4 6 8 10 12 14 16 18 20 22

50

100

150

200

250

300

350

400

450

Re
sp

on
se

 T
im

e(
Se

c.
)

Number of Object Pairs(×108)

 BIST-JOIN
 PPJoin+
 TOPK-STJOIN
 ST-SJOIN

 25 50 75 100

300

600

900

1200

1500

1800

2100

Re
sp

on
se

 T
im

e(
Se

c.
)

Number of Object Pairs(×108)

 BIST-JOIN
 PPJoin+
 TOPK-STJOIN
 ST-SJOIN

(a). Flickr dataset (b). Panoramio dataset (c). Synthetic dataset

Fig. 6. Effect of data size

5.3 Effect of Segmentation Schemes
In this experiment, we compare the four segmentation schemes with a fixed segmentation
granularity (e.g., 32×32×32) on the join performance of the BIST-JOIN method by using
the three datasets. The numbers of the object pairs for the three datasets are 60×108, 8×108,

and 60×108, respectively. For the user-adaptive scheme, the number of the sampling users is
500.

In Fig. 7, the hybrid scheme is superior to the other three ones. The reason is that the
hybrid one not only considers the object data distribution, but also the frequencies of the user

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3589

thresholds. So the distance computation costs of the object pairs in the bounding blocks are
smaller than that of the other three ones. In addition, for the real dataset, the number of
object pairs falling in the bounding blocks using the equal-width approach is smaller than
that of the equal-quantity one due to the skewness of the data distribution. So the join cost of
the equal-width is larger than the equal-quantity one accordingly. Moreover, the computation
cost of the equal-width approach is much smaller than the equal-quantity one especially
when the number of object pairs is large. This is because the equal-quantity approach
involves data sorting processing in terms of different feature distances which is a CPU-
intensive operation as well. Finally, it is interesting to notice that for the synthetic dataset,
the join costs by using the equal-width and equal-quantity methods are approximately equal,
since the number of object pairs in each block is almost equal for the uniform distribution of
the synthetic data.

Equi-Width Equi-Quantity User-Adaptive Hybrid
0

50

100

150

200

250

300

To
ta

l R
es

po
ns

e
Ti

m
e(

Se
c.

)

Segmentation Schemes Equi-Width Equi-Quantity User-Adaptive Hybrid
0

30

60

90

120

To
ta

l R
es

po
ns

e
Ti

m
e(

Se
c.

)

Segmentation Granularity Equi-Width Equi-Quantity User-Adaptive Hybrid
0

50

100

150

200

250

300

To
ta

l R
es

po
ns

e
Ti

m
e(

Se
c.

)

Segmentation Schemes
(a). Flickr dataset (b). Panoramio dataset (c). Synthetic dataset

Fig. 7. Effect of segment schemes on computation cost

5.4 Effect of Segmentation Granularity
In this experiment, we proceed to study the effect of the segmentation granularity for the
BIST-JOIN method in which the segmentation granularities are 4×4×4, 8×8×8, 16×16
×16, 32×32×32, 64×64×64, and 128×128×128, respectively. The numbers of the
object pairs for the Flickr, the Panoramio and the synthetic datasets are 12×106, 6×106, and
12×106, respectively.

First of all, we test the effect of the segmentation granularity on the pruning ratio (PR). As
illustrated in Fig. 8, the horizontal axis is the segmentation granularity, the vertical axis
refers to the PR, which is defined in Eq.(10):

PR= NumB (10) NumA

where NumA refers to the total number of the object pairs in the DFDP, NumB refers to the
total number of the object pairs in the bounding blocks.

In Fig. 8, with the decrease of the segmentation granularities, the PR is slowing down
dramatically for the real dataset. This is because: 1) the number of the object pairs in the
bounding blocks is reduced when the granularity decreases; 2) the data distribution of the
real object dataset is skew. When the granularity is beyond 8×8×8, the PR reduces
gradually. Compared with the two real datasets, for the synthetic dataset, the values of the
PR are slowing down gradually due to the uniform data distribution.

Next, we proceed to evaluate the effect of the segmentation granularity on the response
time. In Fig. 9, for the two real datasets, the response time are reducing first with the
decrease of the granularity; but when the segmentation granularity is beyond 32×32×32,
the response time is gradually increasing. So the granularity 32×32×32 is an optimal one
by which the total response time is minimal. The reason behind it is that although the
decreasing granularity results in the reduced number of object pairs in bounding blocks,
accessing the inner and bounding blocks with increasing number incurs a loss of CPU and
I/O costs.

3590 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128*128

0

20

40

60

80

100

PR
(%

)

Segmentation Granularity

91.6%
82.4%

0.75% 0.22% 0.09% 0.053%

 4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128*128

0

20

40

60

80

100

PR
(%

)

Segmentation Granularity

98%
89%

0.82% 0.24% 0.1% 0.058%

 4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128*128

0

20

40

60

80

100

PR
(%

)

Segmentation Granularity

91.6%

75.4%

45.7%

33.2%

10.1%
1.53%

(a). Flickr dataset (b). Panoramio dataset (c). Synthetic dataset

Fig. 8. Effect of segmentation granularity on the PR

4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128
0

50

100

150

200

250

300

350

To
ta

l R
es

po
ns

e
Ti

m
e(

Se
c.

)

Segmentation Granularity

350

245

3.43 0.99 1.29 5.35

4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128

0

50

100

150

200

To

ta
l R

es
po

ns
e

Ti
m

e(
Se

c.
)

Segmentation Granularity

170

120

2.13 0.69 0.79 3.15

 4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128
0

50

100

150

200

250

300

350

To
ta

l R
es

po
ns

e
Ti

m
e(

Se
c.

)

Segmentation Granularity

344

223

6.33 1.99 4.29 9.35

(a). Flickr dataset (b). Panoramio dataset (c). Synthetic dataset

Fig. 9. Effect of segmentation granularity on the response time

5.5 Effect of Thresholds
The experiment tests the effect of thresholds on the join performance. For each type of data
set, the numbers of the object pairs are 100×108, 20×108, and 100×108, respectively. The
segmentation granularity for the BIST-JOIN is 32×32×32.

Fig. 10 shows that when θT increases, the response time of all methods decreases due to
the reduction of the join results. The response time of BIST-JOIN and the ST-SJOIN methods
decrease gradually, and the BIST-JOIN method is best among them. The reasons are similar
to the above.

As demonstrated in Fig. 11, with the increase of θS, the join has more results and thus the
response time of all methods also increases. We notice that, however, in case of the two real
datasets, the time increase of the TOPK-STJOIN and the BIST-JOIN are smaller compared to
the synthetic dataset. This is because the spatial feature is not a dominating one compared
with the textual one; the TOPK-STJOIN and the BIST-JOIN on the real datasets are very
close to a textual similarity join, since the join performance of the BIST-JOIN on the two real
data sets are not dominantly affected by θT. Therefore, the threshold θT is more important
than θS for the real datasets.

0.25 0.50 0.75 1.00

300

600

900

1200

1500

1800

2100

Re
sp

on
se

 T
im

e(
Se

c.
)

θT

 BIST-JOIN
 PPJoin+
 ST-SJOIN
 TOPK-STJOIN

 0.25 0.50 0.75 1.00

100

200

300

400

500

600

Re
sp

on
se

 T
im

e(
Se

c.
)

θT

 BIST-JOIN
 PPJoin+
 ST-SJOIN
 TOPK-STJOIN

 0.25 0.50 0.75 1.00
0

500

1000

1500

2000

Re
sp

on
se

 T
im

e(
Se

c.
)

θT

 BIST-JOIN
 PPJoin+
 ST-SJOIN
 TOPK-STJOIN

(a). Flickr dataset, θS=0.2 (b). Panoramio dataset, θS =0.2 (c). Synthetic dataset, θS=0.2

Fig. 10. Varying the textual similarity threshold θT

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3591

0.25 0.50 0.75 1.00
250

500

750

1000

1250

1500

1750

2000

2250

Re
sp

on
se

 T
im

e(
Se

c.
)

θS

 BIST-JOIN
 PPJoin+
 ST-SJOIN
 TOPK-STJOIN

 0.25 0.50 0.75 1.00

100

200

300

400

500

600

Re
sp

on
se

 T
im

e(
Se

c.
)

θS

 BIST-JOIN
 PPJoin+
 ST-SJOIN
 TOPK-STJOIN

 0.25 0.50 0.75 1.00

300

600

900

1200

1500

1800

2100

Re
sp

on
se

 T
im

e(
Se

c.
)

θS

 BIST-JOIN
 PPJoin+
 ST-SJOIN
 TOPK-STJOIN

(a). Flickr dataset, θT=0.3 (b). Panoramio dataset, θT=0.3 (c). Synthetic dataset, θT=0.3

Fig. 11. Varying the spatial distance threshold θS

6. Conclusions and Future Work

In this paper, we proposed an index support spatio-textual similarity join (ST-SJOIN) method
called the BIST-JOIN. Finally, the extensive experiments with real-life and synthetic datasets
demonstrate the efficiency of our proposed method outperforms that of the state-of-the-art
methods.
 In our future work, we will focus on the study of arbitrary-feature-based similarity join
and its indexing scheme.

References

[1] A-X. Sun, S. S. Bhowmick, K. Tran Nam Nguyen, G. Bai, “Tag-Based Social Image Retrieval:
An Empirical Evaluation,” Journal of the American Society for Information Science and
Technology (JASIST), vol.62, no.12, pp. 2364–2381, 2011. Article (CrossRef Link).

[2] X-R. Li, Cees G. M. Snoek, M. Worring, A. W. M. Smeulders, “Harvesting Social Objects for Bi-
Concept Search,” IEEE Transactions on Multimedia, vol.14, no.4, pp. 1091-1104, 2012.
Article (CrossRef Link).

[3] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,” in Proc. of VLDB, pp.
918-929, 2006. Article (CrossRef Link).

[4] J. Ballesteros, A. Cary, and N. Rishe, “Spsjoin: parallel spatial similarity joins,” in Proc. of GIS,
pp. 481– 484, 2011. Article (CrossRef Link).

[5] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity search,” in Proc. of WWW,
2007. Article (CrossRef Link).

[6] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of spatial joins using r-trees,” in
Proc. of SIGMOD Conference, 1993. Article (CrossRef Link).

[7] E. P. F. Chan. “Buffer queries,” IEEE Transactions on Knowledge and Data Engineering, vol.15,
no.4, pp.895–910, 2003. Article (CrossRef Link).

[8] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for similarity joins in data
cleaning,” in Proc. of ICDE, 2006. Article (CrossRef Link).

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection: A survey,”
IEEE Transactions on Knowledge and Data Engineering, vol.19, no.1, pp.1–16, 2007.
Article (CrossRef Link).

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava,
“Approximate string joins in a database (almost) for free,” in Proc. of VLDB, pp.491-500, 2001.
Article (CrossRef Link).

https://doi.org/10.1002/asi.21659
https://doi.org/10.1109/TMM.2012.2191943
http://dl.acm.org/citation.cfm?id=1164206
https://doi.org/10.1145/2093973.2094054
https://doi.org/10.1145/1242572.1242591
https://doi.org/10.1145/170036.170075
https://doi.org/10.1109/TKDE.2003.1209007
https://doi.org/10.1109/ICDE.2006.9
https://doi.org/10.1109/TKDE.2007.250581
http://dl.acm.org/citation.cfm?id=672200

3592 Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

[11] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,” in Proc. of SIGMOD,
2004. Article (CrossRef Link).

[12] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,” in Proc. of ICDE, 2009.
Article (CrossRef Link).

[13] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins for near duplicate detection,”
in Proc. of WWW, 2008. Article (CrossRef Link).

[14] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient similarity joins for near-duplicate
detection,” ACM Transactions on Database Systems, vol. 36, no.3, 15, 2011.
Article (CrossRef Link).

[15] P. Bouros, S. Ge, and N. Mamoulis, “Spatio-Textual Similarity Joins,” in Proc. of VLDB 2013.
Article (CrossRef Link).

[16] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval. Addison Wesley,” 1st
edition edition, May 1999. Article (CrossRef Link).

[17] A. Z. Broder, “On the resemblance and containment of documents,” in Proc. of SEQS, 1997.
Article (CrossRef Link).

[18] M. Charikar, “Similarity estimation techniques from rounding algorithms,” in Proc. of STOC,
2002. Article (CrossRef Link).

[19] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for similarity joins in data
cleaning,” in Proc. of ICDE, 2006. Article (CrossRef Link).

[20] A. Chowdhury, O. Frieder, D. A. Grossman, and M. C. McCabe, “Collection statistics for fast
duplicate document detection,” ACM Transactions on Information Systems, vol. 20, no. 2, pp.171
–191, 2002. Article (CrossRef Link).

[21] D. Deng, G-L. Li, J-H. Feng, “A Pivotal Prefix Based Filtering Algorithm for String Similarity
Search,” in Proc. of SIGMOD 2014, 673-684, 2014. Article (CrossRef Link).

[22] H-Q. Hu, G-L. Li, Z-F. Bao, J-H. Feng, Z-G. Gong, “Topk Spatio-Textual Similarity Join,” IEEE
Transactions on Knowledge and Data Engineering, 2015. Article (CrossRef Link).

[23] G-L. Li, J. He, D. Dong, J. Li, J-H. Feng, “Efficient Similarity Search and Join on Multi-
Attribute Data,” in Proc. of SIGMOD 2015, 2015. Article (CrossRef Link).

[24] W-B. Tao, M-H. Yu, G-L. Li, “Efficient Top-K SimRank-based Similarity Join,” in Proc. of
VLDB 2015. Article (CrossRef Link).

[25] D. Deng, G-L. Li, H. Wen, J-H. Feng, “An Efficient Partition Based Method for Exact Set
Similarity Joins,” in Proc. of VLDB, 2016. Article (CrossRef Link).

[26] Z-Y. Shang, Y-X. Liu, G-L. Li and J-H. Feng, “K-Join: Knowledge-Aware Similarity Join,” in
Proc. of ICDE 2017. Article (CrossRef Link).

[27] N. Ta, G-L. Li, J-H. Feng, “Signature-Based Trajectory Similarity Join,” IEEE Transactions on
Knowledge and Data Engineering, 2017. Article (CrossRef Link).

[28] http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
[29] http://www.panoramio.com/

https://doi.org/10.1145/1007568.1007652
https://doi.org/10.1109/ICDE.2009.111
doi:%2010.1145/1367497.1367516
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.14778/2428536.2428537
https://doi.org/10.1080/14735789709366603
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1145/509907.509965
https://doi.org/10.1109/ICDE.2006.9
https://doi.org/10.1145/506309.506311
https://doi.org/10.1145/2588555.2593675
doi:%2010.1109/ICDE.2016.7498433
https://doi.org/10.1145/2723372.2723733
https://doi.org/10.14778/2735508.2735520
https://doi.org/10.14778/2856318.2856330
https://doi.org/10.1109/TKDE.2016.2601325
https://doi.org/10.1109/TKDE.2017.2651821
http://www.panoramio.com/

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 7, July 2017 3593

Dr. Yiming Xiang is currently an associate professor at the College of Management

& e-Business in Zhejiang Gongshang University. He obtained his Ph.D. degree from

Zhejiang University in 2015. His research interests focus on information processing and

management.

Dr. Yi Zhuang is a recipient of the CCF Doctoral Dissertation Award conferred by

Chinese Computer Federation in 2008 and IBM Ph.D. Fellowship 2007–2008. He is

currently a full professor at the College of Computer & Information Engineering in

Zhejiang Gongshang University where he joined as faculty member since May 2008. He

obtained his Ph.D. degree in computer science from Zhejiang University in March 2008.

From January 2008 to March 2008, supported by IBM Ph.D. Fellowship, Dr. Zhuang

has spent 3 months to participate in the study of an optimal hybrid storage model based

on DB2 as a research intern in IBM China Research Lab. His research interests mainly

focus on multimedia database and cloud computing. He has published 40+ papers in the

leading journals and conferences, i.e., ACM TOIT, ACM TALIP, Information Sciences,

KAIS, MMSJ, MATP, and Expert System with Applications, etc.

Nan Jiang received the bachelor degree of medical science and the master degree of

medical science both from the Zhejiang University in 2004 and 2007, respectively. Her

research interests mainly focus on medical image processing. She has published 10+

papers in international conferences and journals.

