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Abstract 
 

Given two collections of objects that carry both spatial and textual information in the form of 
tags, a Spatio-Textual-based object Similarity JOIN (ST-SJOIN) retrieves the pairs of objects 
that are textually similar and spatially close. In this paper, we have proposed a block 
index-based approach called BIST-JOIN to facilitate the efficient ST-SJOIN processing. In 
this approach, a dual-feature distance plane (DFDP) is first partitioned into some blocks 
based on four segmentation schemes, and the ST-SJOIN is then transformed into searching 
the object pairs falling in some affected blocks in the DFDP. Extensive experiments on real 
and synthetic datasets demonstrate that our proposed join method outperforms the state-of- 
the-art solutions. 
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1. Introduction 

With the increasing complexity of the data representation over the years, data can be easily 
‘tagged’ with different types of information, such as keywords and spatial locations, etc. For 
example, webpages contain keywords and they may also be associated to locations; photo- 
graphs in photo-sharing services, such as Flickr, are assigned descriptive tags and spatial 
locations [1, 2]; persons in social networks and customer databases have profile entries 
(keywords) and addresses. The enrichment of objects with multi-source descriptive informa- 
tion allows for more complex queries and analysis over the data. 

As one of the important object queries, a Spatio-Textual-based object Similarity JOIN 
(ST-SJOIN) has played a critical role in many applications. Here are two representative 
examples: 

● Near-identical object detection. One of the most important applications of the 
ST-SJOIN is near-identical object detection. For example, consider a database of 
spatially and textually tagged images (e.g., Flickr). Finding similar image pairs based 
solely on their tag similarity may not be sufficient, if the tags are not location 
dependent. Thus, an image tagged as ‘house’ is textually similar to other house photos 
around the world, but can only be actually similar to photographs of the same house 
(taken from nearby locations). A spatio-textual (self) join can be used to identify pairs 
of images showing the same subject. 

● Personalized recommendation. Another important application is a personalized 
recommendation. For example, a user wants to obtain some objects for personal needs. 
That is, the returned objects need to be textually similar to the preference and spatial 
closely to the preference location. So, the ST-SJOIN of the query object with user 
preferences and the objects in a dataset can return some pairs of objects that satisfy 
users’ needs. 

  In this paper, we identify and solve the problem of the ST-SJOIN for objects that is to 
retrieve a pair of objects of which the textual or spatial information are similar. Formally, 
given two collections of objects R and S that carry both textual and spatial information, the 
ST-SJOIN retrieves the subset J of R×S, such that for every (r,s)∈J, two following criteria 
have to be satisfied: 
― r is spatially close to s, based on a distance threshold (i.e., dis(r,s)≤θS, where dist 

denotes distance between locations),  
― r is textually similar to s, based on a similarity threshold θT (i.e., tSim(r,s)≤θT, where 

tSim denotes textual similarity).  
Suppose that there are two object sets R and S. There are six objects (r1 to r6) in R and four 

objects (s1 and s4) in S are joined based on their textual content (T) and spatial locations (S). 
Assuming qualifying pairs should have textual similarity tSim at least θT=0.5 and spatial 
distance dist at most θS=0.4, the result of the join is (r3, s1), (r1, s3) and (r6, s4). 

To support efficient ST-SJOIN processing, in this paper, we have proposed a block index 
approach called BIST-JOIN. In particular, the object pairs in the high-dimensional feature 
spaces are first mapped into a dual-feature distance plane (DFDP), and then the ST-SJOIN is 
transformed into searching the object pairs falling in the join rectangle (JR) in this plane 
without sets intersection processing. To further improve the join efficiency, we also propose 
a unified index structure called the block index.  

The primary contributions of this paper are as follows: 
1. We present a block index-based method (BIST-JOIN) to facilitate the efficient spatio- 

textual join processing. 
2. We design four segmentation schemes to partition the DFDP into several blocks.  
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3. We perform extensive experiments on real and synthetic datasets to evaluate the 
efficiency of our proposed object similarity join algorithm. 

The rest of this paper is organized as follows. In Section 2, we provide a background of 
our work. Then in Section 3, we give the problem formulation of this work. In Section 4, we 
introduce an efficient similarity join algorithms based on spatial and textual features. In 
Section 5, we report the results of extensive experiments that are designed to evaluate the 
efficiency of the proposed approach. Finally, we conclude in the final section. 

2. Related Work 
Similarity join processing is a long standing yet challenging research topic that has attracted 
much attention in several research communities. Existing work includes spatial join [6, 7, 
14], textual join [3, 12, 13, 14] and set-similarity join [3, 5, 9, 13], etc.  

For spatial joins, efficient algorithms [6] have been developed for data indexed by R-trees. 
The ST-SJOIN [15] extends the ε-distance join [7]. Given two spatial datasets R and S, the 
ε-distance join finds the pairs (r, s) such that r∈R, s∈S, and distl(r, s)≤ε. The ε-distance join 
processing is similarly to a spatial intersection join: the R-trees that index R and S are con- 
currently traversed by recursively following pairs of entries for which the minimal bounding 
rectangles (MBR) have minimum distance at most ε. Further, Chan [7] proposed techniques 
for minimizing the distance computation cost between objects and MBRs. 

For set-similarity join, given a collection D of set-valued data, the problem is to find pairs 
(x, y) of sets in D, such that simt(x, y)≥θ, where simt(.,.) is a similarity function and θ is a 
threshold. The main application of set-similarity joins is near-duplicate object detection [9]. 
Set-similarity joins can also be used to facilitate string matching. For example, Gravano et al. 
[10] showed that the edit distance between two strings can be bounded by set-similarity 
measures defined on two sets of q-grams, which approximate the strings. The prevalent 
approach in the past is to solve an approximate version of the problem, i.e., finding most of, 
if not all, similar objects. Several synopsis-based schemes have been proposed and widely 
adopted [16, 17, 19].  

A recent trend is to investigate algorithms that compute the similarity join exactly. Recent 
advances include inverted index-based methods [11], prefix filtering-based methods [5, 18], 
and signature-based methods [3]. Among them, the recently proposed All-Pairs algorithm [5] 
has been demonstrated to be highly efficient and scalable to tens of millions of records. 
Nevertheless, the All-Pairs algorithm, as well as other prefix filtering-based methods, usually 
generates a huge amount of candidate pairs, all of which need to be verified by the similarity 
function. Computing set-similarity joins based on inverted files [14] was first proposed in 
[11]: for each object x, the inverted lists that correspond to x’s elements are scanned to 
accumulate the similarity between x and all other objects. Several optimizations over this 
approach are proposed, including scanning only a smaller subset of x’s lists and performing a 
single pass over the data that constructs the inverted index and computes the join result at the 
same time. Chaudhuri et al. [8] introduced an efficient filter-refinement framework for set- 
similarity joins, based on the observation that for two sets x, y to satisfy sim(x,y)≥t, a 
necessary condition is that the prefixes of x and y should have at least some minimum 
overlap. Arasu et al. [3] showed that this prefix-based filtering is one of the possible 
summary schemes that one could use as necessary conditions and provided alternative 
schemes with theoretical bounds on their effectiveness. Bayardo et al. [5] proposed an 
efficient framework for evaluating set-similarity joins, which minimizes the necessary 
elements to add in the inverted file, during join evaluation, based on pre-computed bounds 
on the element weights in the sets and appropriate orderings for the domain of set elements 
and the database. Xiao et al. [13] optimized this method by integrating positional filtering 
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into the All-Pairs algorithm [5], which is called the ppjoin. Based on it, they further 
employed a suffix filtering to the ppjoin (i.e., ppjoin+) which is complementary to the 
existing prefix filtering method and can work on tokens both in the prefixes and the suffixes. 
The technique was later extended to compute top-k set-similarity joins [12]. Deng et al. [21] 
proposed an efficient partition based method for exact set similarity joins. Hu et al. [22] 
proposed a top-k spatio-textual similarity join scheme called the TOPK-STJOIN, which is an 
improvement of the ST-SJOIN [15]. Li et al. [23] proposed an efficient similarity search and 
join on multi-attribute data. Tao et al. [24] presented an efficient top-k SimRank-based 
similarity join. Deng et al. [27] devised a pivotal prefix based filtering algorithm for string 
similarity search. Shang et al. [26] presented a knowledge-aware similarity join. Ta et al. [27] 
presented a signature-based trajectory similarity join.  

3. Problem Formulation 
First we briefly summarize the notations that will be used in the rest of the paper in Table 1. 

Table 1. Summary of frequent symbols 

Symbol Description 
R, S two object sets 

T a tag set 
Oi the i-th object 
|●| the number of objects in ● 
 •  the integral part of ● 
k the number of the segmentation for each feature 

dist(Ii,Ij) spatial distance between two objects 

tSim(Ii,Ij) 
textual similarity distance between two objects based on Jacard 

distance 
θT a join threshold for textual feature 
θS a join threshold for spatial feature 

 
Definition 1 (SPATIO-TEXTUAL OBJECT). A spatio-textual object Oi can be modeled as a 

triplet:  
                              (1) 

where i is the ID number of Oi, T refers to the tag set assigned by users to Oi, and S refers to 
the spatial information of Oi. 

Definition 2 (TEXTUAL SIMILARITY DISTANCE). For each pair of objects (i.e, Oi and Oj), 
their textual similarity distance (tSim) can be derived in Eq.(2): 

                   (2) 

where T(Oi) is the tags assigned for Oi. 

Definition 3 (SPATIAL DISTANCE). For each pair of objects (i.e., Oi and Oj), their spatial 
distance (dist) can be derived in Eq.(3): 

                   (3) 

where Oi.x, Oj.x, Oi.y and Oj.y are the latitude and longitude axis values of Oi and Oj , 
respectively. 

For illustration, based on definition 3, a normalized spatial distance is proposed in the 
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range of [0, 1].  

Definition 4 (NORMALIZED SPATIAL DISTANCE). Given a spatial distance: dist(Oi,Oj), its 
corresponding normalized spatial distance (Dist) can be defined in Eq.(4): 

                            (4) 

such that Dist(Oi, Oj)∈[0,1], where dist(Oi,Oj) is defined in Eq.(3) 

Definition 5 (SPATIO-TEXTUAL SIMILARITY JOIN). Given two object sets: R and S, their 
spatio-textual similarity join is a set, which can be formally represented as: 

              (5) 

4. The BIST-JOIN Algorithm 
For the ST-SJOIN processing, in this section, we propose a block index-based ST-JOIN 
(BIST-JOIN) method. 

4.1 Motivations 
As the ST-SJOIN processing involves CPU and I/O intensive intersection operation, the join 
performance can be significantly improved if such intersection processing can be reduced or 
avoided.  

Definition 6 (JOIN RECTANGLE). A join rectangle is a rectangle in which two axis 
correspond to two features, respectively; and the maximal value of each feature distance are 
two threshold values (i.e., θT and θS), respectively. Formally denoted as JR(θT,θS). 

Based on Definition 6, as shown in Fig. 1, given the two join thresholds (i.e., θT and θS), 
the ST-SJOIN problem can be transformed to a new problem of obtaining the object pairs 
falling in the corresponding JR(θT,θS). Compared with the above two methods, the object 
pairs in the JR can be easily and efficiently obtained without much CPU-intensive 
intersection operation. 

How to effectively and efficiently obtain the object pairs in the JR is a challenging issue. In 
this subsection, we propose a Block Index-based ST-JOIN algorithm called the BIST-JOIN. 
The basic idea behind it is to segment the range of each feature distance into sub-ranges. In 
other words, the DFDP is partitioned into blocks in which there exists the corresponding 
object pairs. The ST-SJOIN processing is then transformed into searching for the object pairs 
in the affected blocks of the JR(θT,θS) in the DFDP. 
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Fig. 1. Join Rectangle of a ST-SJOIN 
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4.2 Segmentation Schemes 
In this subsection, we introduce four segmentation schemes: 1) equal-width segmentation, 2) 
equal-quantity segmentation, 3) user-adaptive segmentation, and 4) hybrid segmentation. 

● Equal-Width Segmentation 

  In the equal-width segmentation-based approach, as shown in Fig. 2(a), we equally 
segment the range [0, 1] into k segments. For the two features, the number of the blocks is k2. 
Due to data skew, the number of object pairs falling in each block is different.  

● Equal-Quantity Segmentation 

The equal-width segmentation-based approach is more suitable to the feature data that are 
uniformly distributed. In real applications, the data distribution, however, is skew to some  
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(a). Equal-width-based     (b). Equal-quantity-based   (c). User adaptive-based    (d). hybrid-based 

Fig. 2. An example of the four segmentation schemes 
 
extent. So, this segmentation approach cannot keep a balanced distribution of the number of 
object pairs in each block. The CPU cost in the refinement process would thus be larger in 
this case.  

To address this problem, we propose an equal-quantity segmentation scheme that enables 
the number of object pairs in each block to be equal. Specifically, in Fig. 2(b), the object 
pairs in the feature distance space are first partitioned into k textual segments in terms of the 
textual distance in which the number of the object pairs in each segment is equal. For each 
textual segment, its corresponding object pairs are partitioned into k spatial segments in 
terms of the spatial distance in which the number of the object pairs in each segment is 
equal.  

● User-Adaptive Segmentation 

The above two segmentation schemes are based on the distributions of the feature 
distances themselves. The ST-SJOIN, however, involves users’ participation and interactions 
such as thresholds setting, etc. Different users may choose different thresholds (i.e., θT and 
θS), which motivates us to segment the feature distance based on the learning of the 
frequencies of the user–provided thresholds. That is to say, for each feature, the number of 
segments for a certain range is larger if the user-given threshold is among the range 
frequently. Based on the above motivations, we present a user-adaptive segmentation 
scheme by which the computation costs in the refinement processing can be reduced 
effectively from a user’s perspective.   

Specifically, given t users, assume that each user (Ui) has two thresholds for the object join, 
which are denoted as  and . 
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Definition 7 (USER THRESHOLD HISTOGRAM). Given a feature, its corresponding user 
threshold histogram (UTH) can be modeled as a vector: 

UTH = [<Ran1, Per1>, <Ran2, Per2>, …, <Rank, Perk> ]           (6) 
where Rani is the i-th sampling range, Peri is the ratio of the number of thresholds fall in the 
range Rani to that of all the thresholds, formally denoted as: . 

Based on Definition 7, assume that the total number of the segments is k, then for each 
range (i.e., Rani), the number of segments in this range can be approximately represented as: 

. 

● Hybrid Segmentation 

Based on the above three segmentation schemes, we propose a hybrid segmentation one 
that takes advantage of the above three ones. 

Fig. 2(d) shows an example of the hybrid segmentation. First, the DFDP in this figure is 
segmented into 4 blocks by the equal-quantity approach. Then, for each block, it can be 
further segmented according to the frequency of the users’ given thresholds falling in the 
block. 

4.3 The Index Scheme 
Based on the above four segmentation schemes, the DFDP is partitioned into several blocks 
through segmenting the two feature distances. The block ID (BID) can be represented in 
Eq.(7):  

                         (7) 
where 

― sIDT and sIDS are segment IDs for the two features respectively, where they are 
integers; 

― α is a large constant which is used to stretch the bounding segment ID of the textual 
features (i.e, sIDT). 

Definition 8 (BOUNDING SEGMENT ID). Given a JR(θT,θS), its corresponding bounding 
segment ID (bsID)s for the two features are derived as follows:  

                          (8) 

where bsIDT is the bsID for textual feature, bsIDS is the bsID for spatial feature,  is the 
i-th subrange for the textual distance, and  is the j-th subrange for the spatial distance. 

Definition 9 (BOUNDING BLOCK). Given a JR, its corresponding bounding block is a 
rectangle for which at least one of the segment IDs for the two features is bsIDT or bsIDS. 

Definition 10 (INNER BLOCK). Given a JR, its corresponding inner block is a rectangle for 
which all the segment IDs for the two features are less than bsIDT and bsIDS.  

Fig. 3(a) shows an example of the DFDP in which the two feature distances (i.e., Dist and 
tMax) are divided into four segmentations, respectively. Therefore, the 16 blocks are 
obtained in the DFDP. Given a JR represented by a grey rectangle, there exist six bounding 
blocks and six inner blocks.   

Definition 11 (PIVOT BOUNDING BLOCK). A pivot bounding block (PBB) is a bounding 
block whose BIDP is derived in Eq.(9): 

                          (9) 
where bsIDT and bsIDS are equal to that of in Eq.(8). 
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  Based on Definition 11, the PBBs in Fig. 3 are represented by the blue rectangles. Next, 
given a JR, we need to identify its corresponding affected inner and bounding blocks in 
terms of the four cases as described below. 

● Equal-width segmentation scheme 

For the equal-width segmentation scheme, it is clear that the size of each block is equal. 
Based on Definition 9, in Fig. 3(a), given a JR(θT, θS), its corresponding PBB can be identi- 
fied with the ID number defined in Eq.(9). So the affected inner blocks are 11, 21, 31, 12, 22, 
and 32, and the affected bounding blocks are 13, 23, 33, 43, 42, and 41. 

● Equal-quantity segmentation scheme 

Different from the equal-width segmentation scheme, for the equal-quantity segmentation  
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(a). Equal-width-based   (b). Equal-quantity-based   (c). User adaptive-based      (d). hybrid 

Fig. 3. Four segmentation schemes 
 
scheme, as shown in Fig. 3(b), in most cases, the size of each block represented as blue line 
rectangle is different. So given a join rectangle represented by a grey rectangle in this figure, 
it is not trivial to efficiently identify the corresponding bounding blocks and inner ones, as 
the identification of the bounding blocks involves expensive distance computation especially 
for the large number of blocks. 

To reduce the time cost, we propose a virtual reference block (VRB) approach in which the 
DFDP is equally partitioned into some blocks called VRBs represented by red dash 
rectangles in Fig. 3(b). For each VRB, its corresponding candidate bounding blocks and inner 
ones are obtained previously. Given a JR, similar to the first case (i.e., equal-width), its pivot 
virtual reference block (PVRB) represented by a blue rectangle can be easily identified. As 
the corresponding candidate bounding and inner blocks of each PVRB has already been 
obtained in the preprocessing step, so for the PVRB in Fig. 3(b), the bounding blocks become 
12, 13, 23, 33, 32, and 31, respectively. The inner ones are 11, 22, and 21. 
● User adaptive segmentation scheme 

For user adaptive segmentation, similar to the second case, given a JR in Fig. 3(c), we use 
the above VRB approach to identify the affected bounding blocks (i.e., 12, 13, 14, 21, 22, 23, 
24, 31, 32, 33, and 34) and inner one (i.e., 11). 
● Hybrid segmentation scheme 

In the hybrid segmentation, as shown in Fig. 3(d), assume that DFDP is first partitioned 
into some blocks called parent blocks using the equal-width or equal-quantity approach. 
Then, for each parent block, according to the user adaptive scheme, it can be further 
partitioned into some smaller blocks called child blocks.  

Given a JR, the affected bounding child blocks are 12, 22, 32, 21, and 31, and the affected 
inner ones are 11.  
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Based on the above descriptions, for any JR, its corresponding bounding blocks and inner 
ones have been obtained. Fig. 4 shows a block index structure composed of three levels: 1) 
PBB/PVRB level, 2) Block level, and 3) Data level. 

PBB/PVRB level. For the PBB/PVRB level, as shown in the left part of Fig. 4, the ID 
numbers of the all PBB/PVRBs are indexed by a B-Tree. The leaf node in the B-Tree consists 
of two elements: <PID, ptr>, where PID refers to the pivot bounding block ID and ptr refers 
to a pointer that is pointed to the related inner and bounding blocks; 

The block level. For the block level shown in the middle part of Fig. 4, for each PBB/PVRB, 
its affected blocks (i.e., bounding blocks and inner blocks) are previously identified and 
organized by a linked list. For the node in the linked list, it can be represented by a four-tuple 
lnode:= <BID, ptr, flag, path>, where BID is the ID number of the affected block shown in 
Eq.(7), ptr is a pointer to the next node, flag=1 means the node is a bounding block, else the 
inner one, and path refers to the file path of the corresponding block.  
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Fig. 4. An example of the BIST index structure Fig. 5. Join processing 

 
It is worth mentioning that the object pairs in the inner blocks can be part of the result 

object pairs, while the object pairs in the bounding ones need further refinement processing 
with the criteria of the thresholds. 

The data level. For the data level shown in the right part of Fig. 4, the object pairs in each 
block are recorded and saved by a file whose filename is the block ID (i.e., BID). For the 
candidate object pairs in the affected inner blocks, they can be as part of the result object 
pairs without any refinement processing. But for the candidate object pairs in affected 
bounding blocks, the distances of all object pairs need to be sequentially calculated for the 
refinement processing to verify if they lay in the join block.  

 
Algorithm 1 summarizes the BIST index construction procedure.  

Algorithm 1. Index construction 
Input: two object set: R and S; 
Output: BIST index; 
1.  the DFDP is partitioned into blocks according to a segmentation scheme; 
2.  for each block/PVRB do 
3.     the block ID in Eq.(7) is inserted into a B-Tree; 
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4.  end for 
5.  for each leaf node in the B-tree do 
6.    its corresponding candidate blocks(i.e., bounding blocks and inner blocks) are 

organized by a linked list; 
7.    for each node in the linked list do 
8.      the corresponding object pairs in the block is pointed by this node; 
9.    end for 
10. end for 

4.4 The Join Algorithm 
Algorithm 2 summarizes the whole join processing with two steps: 1) filtering and 2) 
refinement. 

● The filtering step 

In the filtering step, as shown in Fig. 5, given a join rectangle JR(θT, θS) represented by a 
blue one, its corresponding inner and bounding blocks are first identified. The object pairs in 
the inner blocks represented by red grid rectangles in this figure are obtained as part of the 
result object ones. 

● The refinement step 

Once the candidate result object pairs in the bounding blocks are obtained, in the 
refinement step, they need to be further calculated in terms of other feature(s) with the 
restriction of the corresponding thresholds. Finally, the answer object pairs are obtained. 

 
Algorithm 2. Block Index-based ST-JOIN 
Input: the join thresholds; 
Output: the joined object pairs; 
1. the PBB/PVRB is first identified according to the two thresholds which 

corresponds to the inner and bounding blocks;  
2. the object pairs in the inner blocks are obtained as part of the result object 

ones;  
3. for the object pairs in each bounding block do  
4.   the similarity of each object pair is further calculated in terms of other 

feature(s) with the restriction of the corresponding thresholds.  
5. end for 
6. the final answer object pairs are obtained. 

5. Experimental Evaluation 

5.1 Experimental Setup 
In this section, we present an extensive performance study on real and synthetic datasets to 
evaluate the efficiency of our proposed join methods.  

The datasets in the experiment can be composed of two real datasets and one synthetic 
dataset, which are described below:  
1) The Flickr data set. The first social image data set we used is from NUS-WIDE [28] in 

which 260k objects are downloaded from the Flickr.com. We used 100k objects in which 
their textual and spatial features are extracted.  

2) The Panoramio data set. The second social image data set is from the Panoramio.com 
[29], which consists of about 50k geo-tagged objects. Similar to the first dataset, the two 
features of the geo-tagged objects are extracted.    
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3) Synthetic data set. We generated 100k synthetic feature data. Different from the real 
datasets, the tag and spatial features are generated randomly which are uniformly 
distributed.  

We have implemented the four join methods: our BIST-JOIN approach (see Section 4); the 
PPJoin+ method [14], the ST-SJOIN method [15], and the TOPK-STJOIN method [22] in the 
C++ language. The index page size of B-tree is set to 4096 bytes. All the experiments are 
run on an Intel i5-2400 CPU processor at 3.10GHz with 4 gigabytes memory. In our 
evaluation, we use the total response time as the performance metric.  

5.2 Effect of Data Size 
The first experiment tests the effect of data size on the join efficiency. For each type of data 
set, the numbers of the object pairs are 100×108, 20×108, and 100×108, respectively. The 
segmentation granularity for the BIST-JOIN is 32×32×32. 

We have compared the four join methods. As shown in Fig. 6, with the increase of the 
number of object pairs, the total response time of the baseline approach is increasing 
exponentially since it involves an I/O and CPU intensive sequential scan of the object pairs. 
The other three methods increase linearly, and the BIST-JOIN method is superior to that of 
other three ones. Compared with the BIST-JOIN, the other three competitors (i.e., the 
PP-Join, the ST-SJOIN and TOPK-STJOIN) involve the refinements of the candidate object 
pairs which are I/O and CPU intensive. The BIST-JOIN method, however, can obtain the 
candidate object pairs directly without any intersection processing. It is interesting to notice 
that when the number of the object pairs is small, the BIST-JOIN is slightly better than the 
TOPK-STJOIN. As the number of the object pairs increases, however, the performance gap 
between the two methods becomes larger. This is because: 1) for the TOPK-STJOIN, when 
the number of the objects increases, the computation costs for searching the inverted list, 
matching the tokens and verification processing of the candidate object pairs are larger than 
the BIST-JOIN; 2) although the pruning capacity of the TOPK-STJOIN outperforms the 
state-of-the-art methods, the number of the candidate object pairs obtained by the TOPK- 
STJOIN may be larger than that of the candidate ones of the BIST-JOIN at a reasonable 
segmentation granularity (e.g., 32×32×32). 
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(a). Flickr dataset (b). Panoramio dataset (c). Synthetic dataset 

Fig. 6. Effect of data size 

5.3 Effect of Segmentation Schemes 
In this experiment, we compare the four segmentation schemes with a fixed segmentation 
granularity (e.g., 32×32×32) on the join performance of the BIST-JOIN method by using 
the three datasets. The numbers of the object pairs for the three datasets are 60×108, 8×108, 

and 60×108, respectively. For the user-adaptive scheme, the number of the sampling users is 
500.  

In Fig. 7, the hybrid scheme is superior to the other three ones. The reason is that the 
hybrid one not only considers the object data distribution, but also the frequencies of the user 
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thresholds. So the distance computation costs of the object pairs in the bounding blocks are 
smaller than that of the other three ones. In addition, for the real dataset, the number of 
object pairs falling in the bounding blocks using the equal-width approach is smaller than 
that of the equal-quantity one due to the skewness of the data distribution. So the join cost of 
the equal-width is larger than the equal-quantity one accordingly. Moreover, the computation 
cost of the equal-width approach is much smaller than the equal-quantity one especially 
when the number of object pairs is large. This is because the equal-quantity approach 
involves data sorting processing in terms of different feature distances which is a CPU- 
intensive operation as well. Finally, it is interesting to notice that for the synthetic dataset, 
the join costs by using the equal-width and equal-quantity methods are approximately equal, 
since the number of object pairs in each block is almost equal for the uniform distribution of 
the synthetic data. 
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Fig. 7. Effect of segment schemes on computation cost 

5.4 Effect of Segmentation Granularity  
In this experiment, we proceed to study the effect of the segmentation granularity for the 
BIST-JOIN method in which the segmentation granularities are 4×4×4, 8×8×8, 16×16
×16, 32×32×32, 64×64×64, and 128×128×128, respectively. The numbers of the 
object pairs for the Flickr, the Panoramio and the synthetic datasets are 12×106, 6×106, and 
12×106, respectively.  

First of all, we test the effect of the segmentation granularity on the pruning ratio (PR). As 
illustrated in Fig. 8, the horizontal axis is the segmentation granularity, the vertical axis 
refers to the PR, which is defined in Eq.(10): 

PR= NumB (10) NumA 

where NumA refers to the total number of the object pairs in the DFDP, NumB refers to the 
total number of the object pairs in the bounding blocks. 

In Fig. 8, with the decrease of the segmentation granularities, the PR is slowing down 
dramatically for the real dataset. This is because: 1) the number of the object pairs in the 
bounding blocks is reduced when the granularity decreases; 2) the data distribution of the 
real object dataset is skew. When the granularity is beyond 8×8×8, the PR reduces 
gradually. Compared with the two real datasets, for the synthetic dataset, the values of the 
PR are slowing down gradually due to the uniform data distribution. 

Next, we proceed to evaluate the effect of the segmentation granularity on the response 
time. In Fig. 9, for the two real datasets, the response time are reducing first with the 
decrease of the granularity; but when the segmentation granularity is beyond 32×32×32, 
the response time is gradually increasing. So the granularity 32×32×32 is an optimal one 
by which the total response time is minimal. The reason behind it is that although the 
decreasing granularity results in the reduced number of object pairs in bounding blocks, 
accessing the inner and bounding blocks with increasing number incurs a loss of CPU and 
I/O costs. 

 



3590                  Xiang et al.: An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join 

4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128*128

0

20

40

60

80

100

 

 

PR
(%

)

Segmentation Granularity

91.6%
82.4%

0.75% 0.22% 0.09% 0.053%

 4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128*128

0

20

40

60

80

100

 

 

PR
(%

)

Segmentation Granularity

98%
89%

0.82% 0.24% 0.1% 0.058%

 4*4*4 8*8*8 16*16*16 32*32*32 64*64*64128*128*128*128

0

20

40

60

80

100

 

 

PR
(%

)

Segmentation Granularity

91.6%

75.4%

45.7%

33.2%

10.1%
1.53%

 
(a). Flickr dataset (b). Panoramio dataset (c). Synthetic dataset 

Fig. 8. Effect of segmentation granularity on the PR 
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Fig. 9. Effect of segmentation granularity on the response time 

5.5 Effect of Thresholds 
The experiment tests the effect of thresholds on the join performance. For each type of data 
set, the numbers of the object pairs are 100×108, 20×108, and 100×108, respectively. The 
segmentation granularity for the BIST-JOIN is 32×32×32. 

Fig. 10 shows that when θT increases, the response time of all methods decreases due to 
the reduction of the join results. The response time of BIST-JOIN and the ST-SJOIN methods 
decrease gradually, and the BIST-JOIN method is best among them. The reasons are similar 
to the above. 

As demonstrated in Fig. 11, with the increase of θS, the join has more results and thus the 
response time of all methods also increases. We notice that, however, in case of the two real 
datasets, the time increase of the TOPK-STJOIN and the BIST-JOIN are smaller compared to 
the synthetic dataset. This is because the spatial feature is not a dominating one compared 
with the textual one; the TOPK-STJOIN and the BIST-JOIN on the real datasets are very 
close to a textual similarity join, since the join performance of the BIST-JOIN on the two real 
data sets are not dominantly affected by θT. Therefore, the threshold θT is more important 
than θS for the real datasets. 
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Fig. 10. Varying the textual similarity threshold θT 
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(a). Flickr dataset, θT=0.3 (b). Panoramio dataset, θT=0.3 (c). Synthetic dataset, θT=0.3 

Fig. 11. Varying the spatial distance threshold θS 

6. Conclusions and Future Work 

In this paper, we proposed an index support spatio-textual similarity join (ST-SJOIN) method 
called the BIST-JOIN. Finally, the extensive experiments with real-life and synthetic datasets 
demonstrate the efficiency of our proposed method outperforms that of the state-of-the-art 
methods. 
  In our future work, we will focus on the study of arbitrary-feature-based similarity join 
and its indexing scheme.  
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