• Title/Summary/Keyword: testing profile

Search Result 253, Processing Time 0.024 seconds

A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves

  • Yuan, Maodan;Kang, To;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.656-664
    • /
    • 2011
  • In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress.

Spectral Backward Radiation Profile (주파수 대역별 후방복사 프로파일)

  • Kim, Hak-Joon;Kwon, Sung-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2005
  • Ultrasonic backward radiation profile is frequency-dependent when the incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of an used transducers so that it was not easy to characterize the frequency dependence of the SAW(surface acoustic wave) from the backward radiation profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) in a Lecroy DSO(digital storage oscilloscope). The measured spectral profiles showed that the steel specimen of #1200 surface treatment have 2% SAW velocity dispersion of the loaded case and the severly rusty steel specimen have the very big changes in the shape and pattern of the spectral profile. It is concluded that the spectral backward radiation profiles could be very effective tool to evaluate the frequency dependence of surface area.

Generation of the Input Profile for Fatigue Vibration Testing in MAST System (자동차부품(시트,도어) 6축 진동 재현을 위한 가진 프로파일 생성 기법)

  • Kim, Chan-Jung;Beak, Gyoung-Won;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.413-418
    • /
    • 2005
  • Vibration test using the MAST(Multi Axial Simulation Table) is more reliable test than conventional testing process focused on one directional vibration test. The former test could be possible with a advanced control algorithm and hardware supports so that most of the operation is automatically conducted by MAST system itself except the input information that is derived from the measured data. That means the reliability of the vibration test is highly depended on the input profile than any other cases before. In this paper, the optimal algorithm based on energy method is introduced so that the best combination of candidated input PSD data could be constructed. The optimal algorithm renders time information so that the vibration fatigue test is completely possible for any measured signals one wants. The real road test is conducted in short intervals containing some rough roads and the candidated input PSD is obtained from the extra road in proving ground. The testing is targeted for the electronically operated door and seat.

  • PDF

WS-I Sample Application Implementation Experience

  • Seok, Gwang-Jin
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.822-840
    • /
    • 2003
  • The Basic Profile has helped interoperability. Sample Application experience is already reflected in a most major platforms. Usage Scenarios valuable in identifying where BP restrictions apply. Testing is critical.

  • PDF

Flight Environment Simulation Test for Reliability Improvement of Precise Guided Missile (유도무기의 신뢰성 향상을 위한 비행환경 모사시험 방안 연구)

  • Choi, Seung Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.781-787
    • /
    • 2016
  • We introduce FEST (Flight Environment Simulation Test) procedures for precise guided missiles to reliably improve systems. Flight vibration specification was established based on power spectral density curves calculated from flight test data of a high speed precise guided missile. A FEST pre-profile was developed according to flight vibration specification and delivered to a precise guided missile assembly. Vibration responses were measured by installing accelerometers on electronic components vulnerable to dynamic forces. The FEST profile was adjusted by comparing the vibration responses and the flight vibration specification. Subsequently, the FEST profile was repeatedly modified through trial and error, because the responses were similar to the flight environment. The modified FEST profile enabled performance testing of assembled precise guided missiles under simulated flight conditions on the ground, where unexpected errors could be corrected before the flight tests, leading to cost and risk reduction in the development of the precise guided missile system.

Active Shape Model with Directional Profile (방향성 프로파일을 적용한 능동형태 모델)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1720-1728
    • /
    • 2017
  • Active shape model is widely used in the field of image processing especially on arbitrary meaningful shape extraction from single gray level image. Cootes et. al. showed efficient detection of variable shape from image by using covariance and mean shape from learning. There are two stages of learning and testing. Hahn applied enhanced shape alignment method rather than using Cootes's rotation and scale scheme. Hahn did not modified the profile itself. In this paper, the method using directional one dimensional profile is proposed to enhance Cootes's one dimensional profile and the shape alignment algorithm of Hahn is combined. The performance of the proposed method was superior to Cootes's and Hahn's. Average landmark estimation error for each image was 27.72 pixels and 39.46 for Cootes's and 33.73 for Hahn's each.

Construction of Efficient Downhole Seismic Testing System by the Round Robin Test (상호검증시험을 통한 효율적인 다운홀 탄성파 기법 수행 시스템의 구성)

  • Bang, Eun-Seok;Kim, Ki-Seog;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.133-147
    • /
    • 2007
  • Downhole seismic method is very economic and easy of operation because it uses only one borehole and simple surface source to obtain the shear wave velocity ($V_s$) profile of a site. Even though it is widely used by the site investigation companies, universities and institutes, however, the $V_s$ profile determined by downhole seismic method has often low reliability due to employment of wrong combinations of field losing equipment and interpretation method and deficiency of experience. Round robin test was performed and testing equipment and procedure were compared. Adequate downhole seismic testing equipment was constructed based on the comparison and verification study of the round robin test. The data acquisition and software interpretation were also developed for automation and quick test in field. Finally, the effectiveness and applicability were verified through the field test by using the constructed testing system.

Texture profile analysis of acorn flour gel-Comparison of 3$\times$3 latin square with 3sup 3 factorial experiment - (도토리묵의 Texture 특성 -라틴방격법과 요인배치법의 비교-)

  • 김영아
    • Journal of the Korean Home Economics Association
    • /
    • v.23 no.3
    • /
    • pp.49-53
    • /
    • 1985
  • The typical texture profile analysis of acorn flour gel was investigated with Instron univ. testing machine by two experimental designs, 3$\times$3 latin square and $3^{3}$factorial experiment. As the result, it was revealed that Latin square is a useful method to reduce the number of experiments, in the case of a negligible interaction.

  • PDF

Logging for a Stone Column Using Crosshole Seismic Testing (크로스홀 탄성파 시험을 이용한 쇄석말뚝의 검측)

  • Kim, Hak-Sung;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2010
  • An integrity testing for stone columns was attempted using crosshole S-wave logging. The method is conceptionally quite similar to the crosshole sonic logging (CSL) for drilled piers. The critical difference in the logging is the use of S-wave rather than P-wave, which is used in CSL, because swave is the only wave sensing the stiffness of slower unbounded materials than water. An electro-mechanical source, which can generate reversed Swave signals, was utilized in the logging. The stone column was delineated using the S-wave travel times across the stone column, the S-wave velocity profile of the crushed stone($V_{cs}$-profile) and that of surrounding soil($V_s$-profile). In the calculation of $V_{cs}$-profile of the crushed stone, its friction angle and Ko (coefficient of lateral earth pressure at rest) are recommended to be used. The calculation of the column diameter is not much affected by the values of friction angle and Ko.

Designing Statistical Test for Mean of Random Profiles

  • Bahri, Mehrab;Hadi-Vencheh, Abdollah
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.432-445
    • /
    • 2016
  • A random profile is the result of a process, the output of which is a function instead of a scalar or vector quantity. In the nature of these objects, two main dimensions of "functionality" and "randomness" can be recognized. Valuable researches have been conducted to present control charts for monitoring such processes in which a regression approach has been applied by focusing on "randomness" of profiles. Performing other statistical techniques such as hypothesis testing for different parameters, comparing parameters of two populations, ANOVA, DOE, etc. has been postponed thus far, because the "functional" nature of profiles is ignored. In this paper, first, some needed theorems are proven with an applied approach, so that be understandable for an engineer which is unfamiliar with advanced mathematical analysis. Then, as an application of that, a statistical test is designed for mean of continuous random profiles. Finally, using experimental operating characteristic curves obtained in computer simulation, it is demonstrated that the presented tests are properly able to recognize deviations in the null hypothesis.