• Title/Summary/Keyword: testicular peroxidase

Search Result 15, Processing Time 0.02 seconds

Protective effects of Korean Red Ginseng against sub-acute immobilization stress-induced testicular damage in experimental rats

  • Lee, Sang-Ho;Choi, Kyung-Hwa;Cha, Kyu-Min;Hwang, Seock-Yeon;Park, Un-Kyu;Jeong, Min-Sik;Hong, Jae-Yup;Han, Chang-Kyun;In, Gyo;Kopalli, Spandana Rajendra;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.125-134
    • /
    • 2019
  • Background: Excessive stress causes varied physiological and psychological disorders including male reproductive problems. Here, we attempted to investigate the protective effects of Korean Red Ginseng (Panax ginseng Meyer; KRG) against sub-acute immobilization stress-induced testicular damage in experimental rats. Methods: Male rats (age, 4 wk; weight, 60-70 g) were divided into four groups (n = 8 in each group): normal control group, immobilization control group, immobilization group treated with 100 mg/kg of KRG daily, and immobilization group treated with 200 mg/kg of KRG daily. Normal control and immobilization control groups received vehicle only. KRG (100 mg/kg and 200 mg/kg) was mixed in the standard diet powder and fed daily for 6 mo. Parameters such as organ weight, blood chemistry, sperm kinematic values, and expression levels of testicular-related molecules were measured using commercially available kits, Western blotting, and reverse transcription polymerase chain reaction. Results: Data revealed that KRG restored the altered testis and epididymis weight in immobilization stress-induced rats significantly (p < 0.05). Further, KRG ameliorated the altered blood chemistry and sperm kinematic values when compared with the immobilization control group and attenuated the altered expression levels of spermatogenesis-related proteins (nectin-2, cAMP responsive element binding protein 1, and inhibin-${\alpha}$), sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor), and antioxidant-related enzymes (glutathione S-transferase m5, peroxiredoxin-4, and glutathione peroxidase 4) significantly in the testes of immobilization stress-induced rats. Conclusion: KRG protected immobilization stress-induced testicular damage and fertility factors in rats, thereby indicating its potential in the treatment of stress-related male sterility.

Beta-carotene prevents the spermatogenic disorders induced by exogenous scrotal hyperthermia through modulations of oxidative stress, apoptosis, and androgen biosynthesis in mice

  • Yon, Jung-Min;Kim, Jae Seung;Lin, Chunmei;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Seop;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • We investigated whether ${\beta}$-carotene (${\beta}-CA$) or ellagic acid (EA), originating from various fruits and vegetables, has a preventive effect against male infertility induced by exogenous scrotal hyperthermia. ICR adult mice were intraperitoneally treated with 10 mg/kg of ${\beta}-CA$ or EA daily for 13 days consecutively. During this time, mice were subjected to transient scrotal heat stress in a water bath at $43^{\circ}C$ for 20 min on day 7, and their testes and blood were obtained on day 14 for histopathologic and biochemical analyses. Heat stress induced significant testicular weight reduction, germ cell loss and degeneration, as well as abnormal localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) and manganese superoxide dismutase (MnSOD) in spermatogenic and Leydig cells. Heat stress also altered the levels of oxidative stress (lipid peroxidation, SOD activity, and PHGPx, MnSOD, and $HIF-1{\alpha}$ mRNAs), apoptosis (Bax, Bcl-xL, caspase 3, $NF-{\kappa}B$, and $TGF-{\beta}1$ mRNAs), and androgen biosynthesis (serological testosterone concentration and $3{\beta}$-hydroxysteroid dehydrogenase mRNA) in testes. These changes were all improved significantly by ${\beta}-CA$ treatment, but only slightly improved by EA treatment. These findings indicate that ${\beta}-CA$, through modulations of oxidative stress, apoptosis, and androgen biosynthesis, is a potent preventive agent against testicular injuries induced by scrotal hyperthermia.

Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin

  • Hina Rashid;Mohammad Suhail Akhter;Saeed Alshahrani;Marwa Qadri;Yousra Nomier;Maryam Sageer;Andleeb Khan;Mohammad F. Alam;Tarique Anwer;Razan Ayoub;Rana J. H. Bahkali
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Objective: Human exposure to multiple xenobiotics, over various developmental windows, results in adverse health effects arising from these concomitant exposures. Humans are widely exposed to bisphenol A, and acetaminophen is the most commonly used over-the-counter drug worldwide. Bisphenol A is a well-recognized male reproductive toxicant, and increasing evidence suggests that acetaminophen is also detrimental to the male reproductive system. The recent recognition of male reproductive system dysfunction in conditions of suboptimal reproductive outcomes makes it crucial to investigate the contributions of toxicant exposures to infertility and sub-fertility. We aimed to identify toxicity in the male reproductive system at the mitochondrial level in response to co-exposure to bisphenol A and acetaminophen, and we investigated whether melatonin ameliorated this toxicity. Methods: Male Wistar rats were divided into six groups (n=10 each): a control group and groups that received melatonin, bisphenol A, acetaminophen, bisphenol A and acetaminophen, and bisphenol A and acetaminophen with melatonin treatment. Results: Significantly higher lipid peroxidation was observed in the testicular mitochondria and sperm in the treatment groups than in the control group. Levels of glutathione and the activities of catalase, glutathione peroxidase, glutathione reductase, and manganese superoxide dismutase decreased significantly in response to the toxicant treatments. Likewise, the toxicant treatments significantly decreased the sperm count and motility, while significantly increasing sperm mortality. Melatonin mitigated the adverse effects of bisphenol A and acetaminophen. Conclusion: Co-exposure to bisphenol A and acetaminophen elevated oxidative stress in the testicular mitochondria, and this effect was alleviated by melatonin.

Protective Effects of Capsosiphon fulvescens and Pheophorbide a on Streptozotocin-induced Oxidative Stress in Testicular (Streptozotocin에 의한 산화 스트레스로부터 매생이 추출물의 정소 조직 보호 효과)

  • Son, Won-rak;Nam, Mi-Hyun;Han, Ah-Ram;Pyo, Min-Cheol;Kim, Se-Wook;Jung, Hye-Lim;Lee, Hwa;Kim, Ji-Yeon;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.2
    • /
    • pp.202-209
    • /
    • 2015
  • We investigated the effect of Capsosiphon fulvescens (CFE) and pheophorbide a (PhA) contained in CFE on oxidative stress regarded as a factor for diabetic complication. Streptozotocin (STZ), known as an oxidative stress inducer, was intraperitoneal injected for causing diabetes. After 7 days, CFE (4 and 20 mg/kg body weight) and PhA (0.2 mg/kg body weight) were treated once a day for 9 weeks. After the sacrifice, testis tissues were collected for the experiments. We confirmed that the treatment with CFE and PhA in diabetic animals not only decreased level of lipid peroxidation and serum nitric oxide compared with the diabetes group, but also the activities of glutathione peroxidase and glutathione-S-transferase were restored remarkably. Furthermore the activity of antioxidant enzymes, catalase and superoxide dismutase, were significantly recovered. With these results, our study suggest that CFE containing PhA may prevent seminal glands damages induced by oxidative stress in diabetic condition.

Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Jeong, Min-Sik;Lee, Sang-Ho;Sung, Jong-Hwan;Seo, Seok-Kyo;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.185-195
    • /
    • 2016
  • Background: To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods: Hydrogen peroxide ($H_2O_2$)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results: GINST treatment ($50{\mu}g/mL$, $100{\mu}g/mL$, and $200{\mu}g/mL$) significantly (p < 0.05) inhibited the $H_2O_2$-induced ($200{\mu}M$) cytotoxicity in GC-2spd cells. Furthermore, GINST ($50{\mu}g/mL$ and $100{\mu}g/mL$) significantly (p < 0.05) ameliorated the $H_2O_2$-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-${\alpha}$, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated $H_2O_2$-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion: GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.