DOI QR코드

DOI QR Code

Protective Effects of Capsosiphon fulvescens and Pheophorbide a on Streptozotocin-induced Oxidative Stress in Testicular

Streptozotocin에 의한 산화 스트레스로부터 매생이 추출물의 정소 조직 보호 효과

  • Son, Won-rak (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Nam, Mi-Hyun (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Han, Ah-Ram (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Pyo, Min-Cheol (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Kim, Se-Wook (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Jung, Hye-Lim (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Lee, Hwa (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Kim, Ji-Yeon (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University)
  • Received : 2014.12.16
  • Accepted : 2015.03.17
  • Published : 2015.06.30

Abstract

We investigated the effect of Capsosiphon fulvescens (CFE) and pheophorbide a (PhA) contained in CFE on oxidative stress regarded as a factor for diabetic complication. Streptozotocin (STZ), known as an oxidative stress inducer, was intraperitoneal injected for causing diabetes. After 7 days, CFE (4 and 20 mg/kg body weight) and PhA (0.2 mg/kg body weight) were treated once a day for 9 weeks. After the sacrifice, testis tissues were collected for the experiments. We confirmed that the treatment with CFE and PhA in diabetic animals not only decreased level of lipid peroxidation and serum nitric oxide compared with the diabetes group, but also the activities of glutathione peroxidase and glutathione-S-transferase were restored remarkably. Furthermore the activity of antioxidant enzymes, catalase and superoxide dismutase, were significantly recovered. With these results, our study suggest that CFE containing PhA may prevent seminal glands damages induced by oxidative stress in diabetic condition.

당뇨 합병증을 일으키는 중요 매체인 산화 스트레스에 대한 매생이 추출물과 그 지표물질인 pheophorbide a (PhA)의 정소 조직 내 산화 스트레스 보호 효과를 streptozotocin(STZ)에 의해 유발된 당뇨 쥐 모델에서 확인하였다. 당뇨를 유발하는 물질로 알려진 STZ를 40 mg/kg body weight(b.w.)의 농도로 복강 투여하여 당뇨를 일으킨 후, 매생이 추출물(CFE)샘플을 각각 4, 20 mg/kg b.w. 그리고 PhA를 0.2 mg/kg b.w.로 9 주간 투여하여 실험하였다. 정소 조직에서 산화 스트레스에 생성되는 체내 과산화물 지표인 혈액 nitric oxide와 지질 과산화물이 당뇨 유발군에 비해 CFE와 PhA 투여군에서 유의적인 감소를 보였으며, 체내 과산화물 축적을 제어하는 효소인 glutathione peroxidase, glutathione-S-transferase가 정상 수준으로 회복되었다. 또한, 체내 항산화 방어기작에서의 중요한 효소인 superoxide dismutase, catalase 활성 또한 샘플 투여 시 회복되는 것을 보아 CFE 투여군과 PhA투여군에서 조직 내 항산화 효소 조절과 함께 과산화물 축적 저해 효과를 통하여 당뇨 상태에서 고혈당에 의한 산화 스트레스가 일으키는 생식 조직 손상으로부터 매생이 추출물과 그 지표물질인 PhA는 보호 효과를 가지는 것을 확인할 수 있었다.

Keywords

References

  1. Danaei, G., Finucane, M.M., Lu, Y., Singh, G.M., Cowan, M.J., Paciorek, C.J., Lin, J.K., Farzadfar, F., Khang, Y.H., Stevens, G.A., Rao, M., Ali, M.K., Riley, L.M., Robinson, C.A., Ezzati, M., and C, G.B.M.R.F.: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 378, 31-40 (2011). https://doi.org/10.1016/S0140-6736(11)60679-X
  2. Giacco, F. and Brownlee, M.: Oxidative stress and diabetic complications. Circ Res, 107, 1058-1070 (2010). https://doi.org/10.1161/CIRCRESAHA.110.223545
  3. Sisman, A.R., Kiray, M., Camsari, U.M., Evren, M., Ates, M., Baykara, B., Aksu, I., Guvendi, G., and Uysal, N.: Potential novel biomarkers for diabetic testicular damage in streptozotocin-induced diabetic rats: nerve growth factor Beta and vascular endothelial growth factor. Dis Markers, 2014, 106-108 (2014).
  4. Guneli, E., Tugyan, K., Ozturk, H., Gumustekin, M., Cilaker, S., and Uysal, N.: Effect of melatonin on testicular damage in streptozotocin-induced diabetes rats. Eur Sur Res, 40, 354-360 (2008). https://doi.org/10.1159/000118032
  5. Redondo, M.J., Fain, P.R., and Eisenbarth, G.S.: Genetics of type 1A diabetes. Recent Prog Horm Res, Vol 56, 56, 69-89 (2001). https://doi.org/10.1210/rp.56.1.69
  6. Tsuji, K., Taminato, T., Usami, M., Ishida, H., Kitano, N., Fukumoto, H., Koh, G., Kurose, T., Yamada, Y., Yano, H., Seino, Y, and Imura H.: Characteristic features of insulin secretion in the streptozotocin-induced NIDDM rat model. Metabolism, 37, 1040-1044 (1988). https://doi.org/10.1016/0026-0495(88)90064-9
  7. Portha, B., Picon, L., and Rosselin, G.: Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia, 17, 371-377 (1979). https://doi.org/10.1007/BF01236272
  8. Giroix, M.H., Portha, B., Kergoat, M., Bailbe, D., and Picon, L.: Glucose insensitivity and amino-acid hypersensitivity of insulin release in rats with non-insulin-dependent diabetes. A study with the perfused pancreas. Diabetes, 32, 445-451 (1983). https://doi.org/10.2337/diab.32.5.445
  9. Kumar, T.R., Doreswamy, K., Shrilatha, B., and Muralidhara: Oxidative stress associated DNA damage in testis of mice: induction of abnormal sperms and effects on fertility. Mutat Res-Gen Tox En, 513, 103-111 (2002). https://doi.org/10.1016/S1383-5718(01)00300-X
  10. Oksanen, A.: Testicular Lesions of Streptozotocin Diabetic Rats. Horm Res, 6, 138-144 (1975). https://doi.org/10.1159/000178671
  11. Hikim, A.P.S. and Swerdloff, R.S.: Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod, 4, 38-47 (1999). https://doi.org/10.1530/ror.0.0040038
  12. Cai, L., Hales, B.F., and Robaire, B.: Induction of apoptosis in the germ cells of adult male rats after exposure to cyclophosphamide. Biol Reprod, 56, 1490-1497 (1997). https://doi.org/10.1095/biolreprod56.6.1490
  13. Zhang, B.B. and Moller, D.E.: New approaches in the treatment of type 2 diabetes. Curr Opin Chem Biol, 4, 461-467 (2000). https://doi.org/10.1016/S1367-5931(00)00103-4
  14. Kwon, M.J., Nam, T.J..: Effects of Mesangi (Capsosiphon fulvecens) Powder on Lipid Metabolism in High Cholesterol Fed Rats. J Korean Soc Food Sci Nutr, 35, 530-535 (2006). https://doi.org/10.3746/jkfn.2006.35.5.530
  15. Cho, E.K., Yoo, S.K., Choi, Y.C.: Inhibitory Effects of Maesaengi (Capsosiphon fulvescens) Extracts on Angiotensin Converting Enzyme and ${\alpha}$-Glucosidase J Life Science, 21, 811-818 (2011). https://doi.org/10.5352/JLS.2011.21.6.811
  16. Beda, N. and Nedospasov, A.: A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide, 13, 93-97 (2005). https://doi.org/10.1016/j.niox.2005.05.002
  17. Spitz, D.R. and Oberley, L.W.: An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem, 179, 8-18 (1989). https://doi.org/10.1016/0003-2697(89)90192-9
  18. Cohen, G., Dembiec, D., and Marcus, J.: Measurement of catalase activity in tissue extracts. Anal Biochem, 34, 30-38 (1970). https://doi.org/10.1016/0003-2697(70)90083-7
  19. Modlinger, P.S., Wilcox, C.S., and Aslam, S.: Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol, 24, 354-365 (2004). https://doi.org/10.1016/j.semnephrol.2004.04.007
  20. Huie R.E., Padmaja S.: The reaction of NO with superoxide. Free Rad. Res., 18, 195-198 (1993). https://doi.org/10.3109/10715769309145868
  21. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A.: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem, 266, 4244-4250 (1991).
  22. Merry, P., Winyard, P.G., Morris, C.J., Grootveld, M., and Blake, D.R.: Oxygen free radicals, inflammation, and synovitis: and synovitis: the current status. Ann Rheum Dis, 48, 864-870 (1989). https://doi.org/10.1136/ard.48.10.864
  23. Griffith, O.W. and Stuehr, D.J.: Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol, 57, 707-736 (1995). https://doi.org/10.1146/annurev.ph.57.030195.003423
  24. Snyder, S.H.: Nitric oxide. No endothelial NO. Nature, 377, 196-197 (1995). https://doi.org/10.1038/377196a0
  25. Xia, Y., Dawson, V.L., Dawson, T.M., Snyder, S.H., and Zweier, J.L.: Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A, 93, 6770-6774 (1996). https://doi.org/10.1073/pnas.93.13.6770
  26. Tomlinson, M.J., East, S.J., Barratt, C.L., Bolton, A.E., and Cooke, I.D.: Preliminary communication: possible role of reactive nitrogen intermediates in leucocyte-mediated sperm dysfunction. Am J Reprod Immunol, 27, 89-92 (1992). https://doi.org/10.1111/j.1600-0897.1992.tb00730.x
  27. Halliwell, B. and Gutteridge, J.M.C.: Lipid-Peroxidation, Oxygen Radicals, Cell-Damage, and Antioxidant Therapy. Lancet, 1, 1396-1397 (1984).
  28. Rosen, P. and Osmers, A.: Oxidative stress in young Zucker rats with impaired glucose tolerance is diminished by acarbose. Horm Metab Res, 38, 575-586 (2006). https://doi.org/10.1055/s-2006-950397
  29. Wohaieb, S.A. and Godin, D.V.: Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes, 36, 1014-1018 (1987). https://doi.org/10.2337/diab.36.9.1014
  30. Bono, A., Caimi, G., Catania, A., Sarno, A., and Pandolfo, L.: Red cell peroxide metabolism in diabetes mellitus. Horm Metab Res, 19, 264-266 (1987). https://doi.org/10.1055/s-2007-1011794
  31. Pigeolet, E., Corbisier, P., Houbion, A., Lambert, D., Michiels, C., Raes, M., Zachary, M.D., and Remacle, J.: Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev, 51, 283-297 (1990). https://doi.org/10.1016/0047-6374(90)90078-T
  32. Shrilatha, B. and Muralidhara: Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol, 23, 578-587 (2007). https://doi.org/10.1016/j.reprotox.2007.02.001
  33. Mruk, D.D., Silvestrini, B., Mo, M.Y., and Cheng, C.Y.: Antioxidant superoxide dismutase - a review: its function, regulation in the testis, and role in male fertility. Contraception, 65, 305-311 (2002). https://doi.org/10.1016/S0010-7824(01)00320-1
  34. Ricci, G., Catizone, A., Esposito, R., Pisanti, F.A., Vietri, M.T., and Galdieri, M.: Diabetic rat testes: morphological and functional alterations. Andrologia, 41, 361-368 (2009). https://doi.org/10.1111/j.1439-0272.2009.00937.x
  35. Fujii, J., Iuchi, Y., Matsuki, S., and Ishii, T.: Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl, 5, 231-242 (2003).
  36. Yan, H. and Harding, J.J.: Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem J, 328, 599-605 (1997). https://doi.org/10.1042/bj3280599