• Title/Summary/Keyword: tested result

Search Result 4,507, Processing Time 0.03 seconds

A study on the analysis of artificial sweeteners in processed foods including emulsified foods by HPLC-DAD

  • Kim, Min-Hee;Lee, Do-Yeon;Ahn, Jang-Hyuk
    • Analytical Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.209-214
    • /
    • 2020
  • This study has been carried out to develop a standard method for quantifying of 3 permitted artificial sweeteners (including sodium saccharine, aspartame, acesulfame potassium) contained in foods by HPLC-DAD. A simple and rapid sample pretreatment method was used to remove fat and protein from the test solution with Carrez clearing regent precipitant know to be effective for protein and fat removal. The artificial sweeteners in the test solution purified through sample pretreatment were detected by high performance liquid chromatograph using a Reverse phase C18 column (5 ㎛, 4.6 × 250 mm). The simultaneous quantitative test of 3 kinds of artificial sweeteners can be effectively performed on the high fat emulsified foods containing a large amount of fat. Using the established simultaneous quantitative test method, artificial sweeteners were tested in foods such as dairy products, snacks and chocolate. The results calibration curve showed good linearity with high regression coefficients and the result of recovery test showed satisfactory recoveries within 80~110 %.

Characteristic wave detection in ECG using complex-valued Continuous Wavelet Transforms

  • Berdakh, Abibullaev;Seo, Hee-Don
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.278-285
    • /
    • 2008
  • In this study the complex-valued continuous wavelet transform (CWT) has been applied in detection of Electrocardiograms (ECG) as response to various signal classification methods such as Fourier transforms and other tools of time frequency analysis. Experiments have shown that CWT may serve as a detector of non-stationary signal changes as ECG. The tested signal is corrupted by short time events. We applied CWT to detect short-time event and the result image representation of the signal has showed us that one can easily find the discontinuity at the time scale representation. Analysis of ECG signal using complex-valued continuous wavelet transform is the first step to detect possible changes and alternans. In the second step, modulus and phase must be thoroughly examined. Thus, short time events in the ECG signal, and other important characteristic points such as frequency overlapping, wave onsets/offsets extrema and discontinuities even inflection points are found to be detectable. We have proved that the complex-valued CWT can be used as a powerful detector in ECG signal analysis.

The Structural Relationships between the Antecedents of Knowledge Sharing and User Performance in Knowledge Management systems (지식관리시스템에서의 지식공유에 대한 영향요인과 성과간의 구조적 관계에 관한 연구)

  • Shin, Seon-Jin;Kong, Hee-Kyoung;Koh, Joon
    • Knowledge Management Research
    • /
    • v.9 no.2
    • /
    • pp.87-107
    • /
    • 2008
  • The knowledge society has come to where the knowledge is the source of wealth contrary to the traditional era that labor and capital were the source of wealth. Thus, corporate is accelerating to introduce the knowledge management and to establish the knowledge management system (KMS) in order to effectively manage the knowledge that can be the source of their competitiveness. The purpose of this paper is to identify the factors which affect knowledge sharing and to prove empirically their relationships with the KMS performance. A survey was conducted and data were collected from 220 respondents of 19 organizations which have adopted KMS. Research model and related hypotheses were tested using PLS Graph 3.0. As a result of data analysis, seven hypotheses out of eleven hypotheses were supported. In particular, knowledge sharing is significantly influenced by those knowledge sharing factors such as openness, trust, training, reward system, perceived usefulness, and communication channel. Also, individual impact is significantly affected by knowledge sharing. This study is expected to provide a sound basis for understanding the importance of knowledge sharing to gain organizational as well as individual competitiveness and exploring ways to effectively share knowledge through enhancing the use of KMS in organizations.

  • PDF

Development and Validation of Food Security Measure (식품 보장 측정의 개발과 타당도 연구)

  • Kim, Ki-Rang;Kim, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.42 no.4
    • /
    • pp.374-385
    • /
    • 2009
  • This study aims to develop an index of food security in order to assess food security status in Korea and to evaluate reliability and validity of the index. The index of food security was developed based on the US Household Food Security Survey Module (US-HFSS). After the US-HFSS was translated and back-translated, it was evaluated and modified by a focus interview for experts. The developed Korean Household Food Security Survey Module (K-HFSS) was tested by cognitive interviews and a pretest for general community population to assess its application for Korean population. For the reliability and validity of K-HFSS, the survey was conducted with 300 adults aged 40 years or more living in a rural community and 212 infants and toddlers living in an urban community. The reliability was assessed by Cronbach' alpha and the validity was evaluated by content validity, construct validity, and criterion-related validity. The questionnaire items of K-HFSS were partly modified, accounting for Korean social and cultural backgrounds and adapted by general community population. The reliability was relatively high, showing Cronbach' alpha coefficients ranged from 0.80 (for adults) to 0.87 (for infants and toddlers). The content and construct validities were all acceptable. The result of criterion-related validity showed that food security status was significantly related to the household income level. In conclusion, the K-HFSS would be used as a reliable and valid instrument to assess food security status in parts of the Korean population.

Acceleration Test of Ion Migration in FR-4 PCB Plated with Sn (Sn 표면처리된 FR-4 재질 PCB에서의 이온마이그레이션 가속시험)

  • Hwang, Soon-Mi;Jung, Young-Baek;Kim, Chul-Hee;Lee, Kwan-Hun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • Recently, as a electronic components are becoming more high-density, so that electronic circuits have smaller pitches between the leads and are more vulnerable to insulation failure. And the reliability of electric insulation has become an ever important issue as device contact pitches and print patterns shrink. Ion migration occurs in highly humid environment as voltage is applied to an installed print circuit. Under highly humid and voltage applied circumstances, electronic components respond to applied voltages by electrochemical ionization of metals, and a conducting filament forms between the anode and cathode across a nonmetallic medium. This leads to short-circuit failure of the electronic component. In thesis, we study acceleration test of ion migration in FR-4 PCB plated with Sn. Voltage applied test of FR-4 PCB circuits plated with Sn was tested in the temperature and humidity environments. As a result of this test, equation of acceleration model was derived.

Modeling of Injector Orifice for the Flow Analysis in LOX Manifold of Liquid Rocket (액체로켓의 산화제 매니폴드 내 유동해석을 위한 분사공 모델링)

  • Kim, Hak-Jong;Byun, Yung-Hwan;Cho, Won-Kook;Seol, Woo-Seok;Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The flow in the LOX manifold of liquid rocket (KSR-III) has been analyzed using a CAE technique with an objective of modeling injector orifices in order to reduce the computational cost for the flow analysis without much losing the accuracy of capturing the flow physics. The numerical result shows that the flow just above the injector orifices is not uniformly distributed in terms of pressure and mass flow rate in case pre-distributors are not equipped inside the manifold. This non-uniformity of mass flux is attributed to the presence of large-scale flow patterns. Several boundary conditions which were designed to effectively replace the presence of injector orifices have been tested and it was found that a simple modeling can be possible by mimicking the actual shape of the orifices.

Characteristics of Unielement Injector Combustion with Flow rates and Chamber Pressures (유량 및 연소압에 따른 액체로켓 단위분사기 연소특성 변화)

  • Moon Il-Yoon;Kim Jong-Gyu;Han Yeoung-Min;Yoo Jin;Lee Yang-Seok;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • In the case of appling a unielement injector developed for a full scale liquid rocket combustor, a operating condition or configuration of the injector is changed by combustion pressure, arrangement and injector quantity of a full scale liquid rocket combustor. In order to verify application, swirl coaxial injectors propelled by jet-A1 and liquid oxygen are tested at different conditions of a combustion pressure, a flowrate and an injector length. As a test result, the application of the present swirl coaxial injectors is excellent because an efficiency of a characteristic velocity is increased at the each test condition beyond that variation of dynamic pressure intensity is small.

  • PDF

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

Experimental investigation on the seismic behavior of reinforced concrete column-steel beam subassemblies

  • Xiong, Liquan;Men, Jinjie;Ren, Ruyue;Lei, Mengke
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.471-482
    • /
    • 2018
  • The composite reinforced concrete and steel (RCS) structural systems have larger structural lateral stiffness, higher inherent structural damping, and faster construction speed than either traditional reinforcement concrete or steel structures. In this paper, four RCS subassemblies with or without the RC slab designed following a strong column-weak beam philosophy were constructed and tested under reversed-cyclic loading. Parameters including the width of slab and composite effect of the RC slab and beam were explored. The test results showed that all specimens performed in a ductile manner with plastic hinges formed in the beam ends near the column faces. The seismic responses of composite connections are influenced significantly by different width of slabs. Compared with that of the steel beam without the RC slab, it was found that the load carrying capacity of composite connections with the RC slab increased by 30% on average, and strength degradation, energy dissipation also had better performance, while the ductility of that were almost the same. Furthermore, the contribution of connection deformation to the overall specimen displacement was analyzed and compared. It decreased approximately 10% due to the coupling effect in the columns and beams with the RC slab. Based on the test result, some suggestions are presented for the design of composite RCS joints.

Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber

  • Azizkhani, Mohammadbagher;Kadkhodapour, Javad;Anaraki, Ali Pourkamali;Hadavand, Behzad Shirkavand;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.779-788
    • /
    • 2020
  • Multi-Walled Carbon nanotubes (MWCNT) coupled with Silicone Rubber (SR) can represent applicable strain sensors with accessible materials, which result in good stretchability and great sensitivity. Employing these materials and given the fact that the combination of these two has been addressed in few studies, this study is trying to represent a low-cost, durable and stretchable strain sensor that can perform excellently in a high number of repeated cycles. Great stability was observed during the cyclic test after 2000 cycles. Ultrahigh sensitivity (GF>1227) along with good extensibility (ε>120%) was observed while testing the sensor at different strain rates and the various number of cycles. Further investigation is dedicated to sensor performance in the detection of human body movements. Not only the sensor performance in detecting the small strains like the vibrations on the throat was tested, but also the larger strains as observed in extension/bending of the muscle joints like knee were monitored and recorded. Bearing in mind the applicability and low-cost features, this sensor may become promising in skin-mountable devices to detect the human body motions.