• Title/Summary/Keyword: test vehicle

Search Result 3,995, Processing Time 0.027 seconds

KSLV용 추진기관 종합시험설비 개념설계

  • Kang, Sun-Il;Kim, Young-Han;Lee, Jung-Ho;Cho, Sang-Yeon;Kim, Yong-Wook
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.232-241
    • /
    • 2004
  • KARI(Korea Aerospace Research Institute) is achieving the KSLV program according to National Space Technology Development Program. In this paper, the authors are intend to introduce the Integrated Power Plant(IPP) test facility which will be constructed for the variety of tests on KSLV program. IPP test facility refers to comprehensive testing equipment for liquid rocket launch vehicle. Using this facility, KARI can verify the adaptedness of parts and subsystems for launch vehicle and finally can qualify the system characteristics of launch vehicle doing kinds of test including hot firing test. IPP test facility will make it possible to simulate the vehicle launching circumstances and to predict the performance of launch vehicle during its flight test.

  • PDF

A Study on Durability Test Method of Vehicle Suspension Systems (차량 현가장치의 내구성 시험에 관한 연구)

  • 백운경
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.24-31
    • /
    • 1995
  • This paper shows the fatigue durability test method for vehicle suspension systems. Durability should be assured for the safe driving during vehicle life cycle. A computer simulation for the vehicle dynamics was used to obtain dynamic loads that were required for the fatigue durability test. Durability tests were done for an Important load-carrying component of the suspension system. Stress analyses using stresscoat and strain gages were also done for the component. This study demonstrated an effective method for the fatigue durability test.

  • PDF

Reliability Verification of Battery Disconnecting Unit (BDU 신뢰성 검증)

  • Yoon, Hye-Lim;Ryu, Haeng-Soo;Ji-Hong;Hong-Tae, Park
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility (상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구)

  • Lee, Chang min;Shin, Jang ho;Kim, Hyun woo;Park, Kun ho;Park, Young joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

An Analytical and Experimental Wheel Tracking Study on Dynamic Interaction of Vehicle (차량의 동적 상호작용에 관한 이론연구 및 윤하중 실험)

  • Kim, Nak-Suk;Pak, Suk-Soon
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.39-52
    • /
    • 2006
  • In this paper, an analytical and experimental study was performed in order to determine the effects of interaction between vehicle and structure. Results presented in the paper show that analytical method including moving load effect can investigate the trend of structural response due to dynamic interaction between vehicle and structure. The wheel tracking machine fitted with 2-axle test vehicle can demonstrate more accurate dynamic interaction between vehicle and structure than the wheel tracking machine fitted without 2-axle test vehicle.

  • PDF

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle (자율주행 안전성 평가 시나리오 개발 및 검증)

  • Chae, Heungseok;Jeong, Yonghwan;Lee, Myungsu;Shin, Jaekon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • Regulation for the testing and operation of automated vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for automated vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for automated vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of automated vehicles on highways. A total of seven scenarios are selected in consideration of safety priority and real traffic situation. Six scenarios are relevant with lane keeping and one scenario is relevant with lane change. All scenarios are developed based on existing ADAS evaluation scenarios and repeated simulation of automated vehicle algorithm. Safety evaluation factors as well as scenarios are developed. The safety factors are based on existing ADAS ISO requirements, ADAS safety factors and current traffic regulations. For the scenarios, a hunter vehicle is needed in addition to automated vehicle evaluated. The hunter vehicle performs multiple roles like preceding vehicle, cut-in vehicle and so on. The hunter vehicle is also automated vehicle equipped with high performance GPS, radar and Lidar. All the scenarios can be implemented by driving a lap on a KATRI ITS test track. These scenarios and safety evaluation factors are investigated via both a computer simulation and an experimental vehicle test on the test track. The experimental vehicle test was conducted with two automated vehicles, which are the evaluated vehicle and the hunter vehicle.

A study on scenario in virtual environment for test about rear-end collision (후방추돌평가 시험을 위한 가상환경 시나리오 개발연구)

  • Baik, Wookyung;Kim, Baeyoung;Kim, Siwoo;Jung, Choongmin;Song, Jongwon;Suh, Myungwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2011
  • Vehicle safety device such as active headrest and rear detection system has been developing as people are interested about rear end collision more than head on or than front. However, there is no any standard or criterion in order to evaluate vehicle safety device for rear end collision. Also there is no test protocol about rear end collision in vehicle experiment. Therefore, this research developed scenario for experiment about rear end collision in vehicle experiment. Also this research evaluated dangerousness about vehicle test and fitness about re-enacting rear end collision using scenario developed using commercial software (PC-Crash) which can re-enact vehicle collision in virtual vehicle experiment. Scenario developed according to statistics from National Highway Traffic Safety Administration and German In-Depth Accident Study. Scenario has twelve cases which composed of Re-LVS (Rear end Leading Vehicle Stop), Re-LVM (Rear end Lead Vehicle Moving) and scenario for evaluation about malfunction of active headrest.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model (차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

A Study on the Safety of Hybrid Tuning for Light-duty Diesel Trucks (소형경유트럭의 하이브리드 튜닝 안전성에 관한 연구)

  • Jeon, Sangwoo;Kwon, Manjae;An, Hosoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.20-25
    • /
    • 2021
  • This paper is the result of a research on hybrid tuning technology developed to improve the actual fuel efficiency and reduce emissions of in-use light-duty diesel trucks. In this study, a hybrid powertrain was constructed by inserting an electric motor between the diesel engine and manual transmission of an internal combustion engine vehicle and installing a battery. To verify the safety, a test was conducted based on the Korean tuning regulations. In particular, since there has been no case of tuning an internal combustion engine vehicle into a hybrid vehicle in Korea, it was necessary to carry out all procedures to receive tuning approval. The approval process consists of a technical review, safety verification test, and application for tuning approval. As a result, the test vehicle was approved for tuning because both the technical review and vehicle test results were suitable. Therefore, this study confirmed the safety of diesel hybrid tuning technology, and laid the foundation for the research and development of technologies to tune into an eco-friendly vehicle as well as the activation of related industries.