• Title/Summary/Keyword: test architecture

Search Result 3,078, Processing Time 0.027 seconds

A Method of Test Case Generation Using BPMN-Based Path Search (BPMN 기반 경로 탐색을 이용한 테스트 케이스 생성 기법)

  • Park, JeJun;Kang, DongSu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.125-134
    • /
    • 2017
  • The SOA (Service Oriented Architecture) based softwares are escalated because of quickly coping with business requirement. SOA can not apply to existing test method because of loosely coupled service and massage exchange architecture. In this paper, we suggest a method of test case generation using BPMN (Business Process Model and Notation). First we model processes, then make Business Flow Graph (BFG). After searching the euler path through symmetrized BFG about input and output degrees, we generate test cases. A method of test case generation using BPMN can apply at SOA-based system, and reduce the number of test cases.

Numerical Analyses of O-Cell Load Test on Pile (양방향말뚝재하시험의 수치해석)

  • Joo, Yong-Sun;Kim, Nak-Kyoung;Kim, Woong-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.748-753
    • /
    • 2008
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurisation causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. Bi-directional load tests using O-cell are now becoming common practice around the world, particularly where the loads to be applied are high or where it is not convenient to perform top-down loading tests. In the study, calculate ultimate capacity of bi-directional load test using FEM and beam on elasto-plastic foundation theory.

  • PDF

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.

Shear behavior of concrete-encased square concrete-filled steel tube members: Experiments and strength prediction

  • Yang, Yong;Chen, Xin;Xue, Yicong;Yu, Yunlong;Zhang, Chaorui
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.431-445
    • /
    • 2021
  • This paper presents experiments and theoretical analysis on shear behavior of eight concrete-encased square concrete-filled steel tube (CECFST) specimens and three traditional reinforced concrete (RC) specimens. A total of 11 specimens with the test parameters including the shear span-to-depth ratio, steel tube size and studs arrangement were tested to explore the shear performance of CECFST specimens. The failure mode, shear capacity and displacement ductility were thoroughly evaluated. The test results indicated that all the test specimens failed in shear, and the CECFST specimens enhanced by the interior CFST core exhibited higher shear capacity and better ductility performance than that of the RC specimens. When the other parameters were the same, the larger steel tube size, the smaller shear span-to-depth ratio and the existence of studs could lead to the more satisfactory shear behavior. Then, based on the compatible truss-arch model, a set of formulas were developed to analytically predict the shear strength of the CECFST members by considering the compatibility of deformation between the truss part, arch part and the steel tube. Compared with the calculated results based on several current design specifications, the proposed formulas could get more accurate prediction.

Dehydration of a Coal Mine Drainage Sludge for the Potential Landfill Cover (탈수 처리된 석탄 광산 슬러지의 복토재 재활용방안)

  • Cui, Ming-Can;Lim, Jung-Hyun;Phyung, Yeaui;Jang, Min;Shim, Yon-Sik;Khim, Jee-Hyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.324-329
    • /
    • 2008
  • A coal mine drainage sludge(designated as CMDS) is mainly generated during physicochemical treatment or electrical purification of the drainage abandoned mine that include dissolved heavy metal. To understand the possibility of an application of the dehydrated CMDS as the landfill cover medium of hygienic a reclaimed ground, an laboratory experiment was performed to investigate the physicochemical and geoengineering characteristics of the dehydrated CMDS. To improve the geoengineering characteristics of the dehydrated CMDS, the liquid limit, plasticity limit test, compaction method test, strength test, and hydraulic conductivity test ware performed with the lithification material mixed sludge. When the mixed ratio of the sludge and the lithification material was more than 1:06, the compaction method was A method, the moisture content less than 33.5%, the strength of mixed sludge was $8.2kg\;cm^{-2}$, the hydraulic conductivity was $2.7\times10^{-6}cm\;sec^{-1}$, the sludge was up to the landfill standard of US Environmental Protection Agency (US EPA).

A Study on the Development of Inhalation Equipment for Seabed Sediment by the Difference of Water Head (수두차를 이용한 해저퇴적물 흡입장비 개발에 관한 연구)

  • Lee, Young-Gill;Son, Choong-Yul;Jeong, Uh-Cheul;Kim, Kang-Sin;Jeong, Kwang-Leol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • This paper deal with development of dredging equipment that proper water head elimination method changing transitional dredging method. Numerical simulation and model test were accomplished for development of seabed sediment inhalation equipment using water head. Sediment elimination system by the difference of water head has been analysed by numerical method. Model test was achieved for inhalation equipment performance test using water head by primary design. Also sediment elimination system has designed and developed that doesn't occur secondary pollution phenomenon. To verify the numerical results are compared with experimental results.

  • PDF

Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete

  • Juradin, Sandra;Ostojic-Skomrlj, Nives;Brnas, Ivan;Prolic, Marina
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • In this paper, 18 single-sized pervious concrete mixtures were tested. The mixtures were prepared by altering: the amount and type of binder, type of aggregate, and the method of compaction. Concrete was compacted in layers in one of five different consolidation techniques: with standard tamping rod, wooden lath, concrete cylinder, or vibration of 12 and 40 s. Tests carried out on the specimens were: slump, density, porosity, coefficients of permeability, compressive strength and splitting strength. The relationships between porosity-density and porosity-strength were established. Two mixtures were selected for the preparation of test slabs on different subgrades and their permeability was tested according to ASTM C 1701-09 Standard. By comparing laboratory and field tests of permeability, it was concluded that the subgrade affects the test results. Measurements on the test slabs were repeated after 1 and 2 years of installation.

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

A Study of Material Characteristics of 120mm-Thick SM490TMC Plate (SM490TMC 극후판재 120mm의 소재특성에 관한 연구)

  • Kim, Sang Seup;Lee, Cheol Ho;Lee, Eun Taik;Han, Tae Ho;Choi, Young Han;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • Seven types of tests were conducted to experimentally evaluate the material properties of ultral-thick (or 120mm-thick) SM490TMC plate. The investigation of through-thickness properties was among the most significant considerations. All chemical and mechanical test results showed the through-thickness homogeneity as required and conformed to the KS(Korean industrial Standards), although the thickness was 1.5 times thicker than the thickness limit (80mm) imposed by Steel Structure Design Code. No reduction in the yield strength of 120mm-thick SM490TMC plate is recommended for design.

Model Test of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 모형실험)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.476-481
    • /
    • 2009
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurization causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. The O-cell pile load test with variable end plate is operated on second steps - the first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell.

  • PDF