References
- ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute, USA.
- Alatshan, F., Osman, S.A., Mashiri, F. and Hamid, R. (2020), "Explicit simulation of circular CFST stub columns with external steel confinement under axial compression", Materials, 13(1), https://doi.org/10.3390/ma13010023.
- Al Zand, A.W., Badaruzzaman, W.H.W. and Tawfeeq, W.M. (2020), "New empirical methods for predicting flexural capacity and stiffness of CFST beam", J. Constr. Steel Res., 164(1), 105778.1-105778.15. https://doi.org/10.1016/j.jcsr.2019.105778.
- An, Y.F. and Han, L.H. (2014), "Behaviour of concrete-encased CFST columns under combined compression and bending", J. Constr. Steel Res., 101, 314-330. https://doi.org/10.1016/j.jcsr.2014.06.002
- Aoyama, H. (1993), "Design philosophy for shear in earthquake resistance in Japan", https://doi.org/10.1016/j.jcsr.2014.06.002.
- ASIC 360 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, USA.
- CECS 188:2005 (2005), Technical Specification for Steel Tube Reinforced Concrete Column Structure, China Planning Press; Beijing, China.
- Choi, K.K., Park, H.G. and Wight, J.K. (2007), "Unified shear strength model for reinforced concrete beams-Part I: Development", ACI Struct. J., 104(2),142-152.
- Choi, K.K. and Park, H.G. (2007), "Unified shear strength model for reinforced concrete beams-Part II: Verification and simplified method", ACI Struct. J., 104(2), 153-161.
- Ekmekyapar, T., Alwan, O.H., Hasan, H.G., Shehab, B.A. and Al-Eliwi, B.J.M. (2019), "Comparison of classical, double skin and double section CFST stub columns: experiments and design formulations", J. Constr. Steel Res., 155(4), 192-204. https://doi.org/10.1016/j.jcsr.2018.12.025.
- Eom, S.S., Vu, Q.V. and Choi, J.H., Papazafeiropoulos, G. and Kim, S.E. (2019), "Behavior of composite CFST beam-steel column joints(Article)", Steel Compos. Struct., 32(5), 583-594. https://doi.org/10.12989/scs.2019.32.5.583.
- Eurocode 2 (1992), Design of concrete structures - Part 1 : General rules and rules for Buildings. European Committee for Standardization ; Brussels, European.
- Eurocode 3 (2005), Design of steel structures - Part 1-1 : General rules and rules for Buildings. European Committee for Standardization; Brussels, European.
- GB 50010-2010. Code for design of concrete structures, Ministry of Construction of China, Beijing, China; 2010 [in Chinese].
- GB 50917-2013. Code for Design of Steel and Concrete Composite Bridges, Ministry of Construction of China, Beijing, China; 2013 [in Chinese].
- Gao, D.Y., You, P.B., Zhang, L.J. and Yan, H.H. (2018), "Seismic behavior of SFRC shear wall with CFST columns". Steel Compos. Struct., 28(5), 527-539. https://doi.org/10.12989/scs.2018.28.5.527.
- Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members", J. Constr. Steel Res., 100(9), 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
- Han, L.H. and An, Y.F. (2014), "Performance of concrete-encased CFST box stub columns under axial compression", J. Constr. Steel Res., 93(2), 62-76. https://doi.org/10.1016/j.jcsr.2013.10.019.
- Hsu, T.T.C. and Mo, H.Y.L (2010), "Unified Theory of Concrete Structures", Wiley. https://doi.org/10.1002/9780470688892
- Khateeb, B.M., Siddiqui, N.A., Almusallam, T.H., Abbas, H. and Al-Salloum, Y.A. (2020), "Behavior of novel CFST circular column-to-foundation connections under cyclic loading", Eng. Struct., 221, 111051. https://doi.org/10.1016/j.engstruct.2020.111051.
- Kim, J.H. and Mander. J.B. (1999), "Truss modeling of reinforced concrete shear-flexure behavior", Multidisciplinary Center for Earthquake Engineering Research, Buffalo, USA.
- Lehman, D., Roeder, C., Heid, A., Maki, T. and Khaleghi, B. (2018), "Shear response of concrete filled tubes part 1: experiments", J. Constr. Steel Res., 150(11), 528-540. https://doi.org/10.1016/j.jcsr.2018.08.027.
- Li, W., Xu, L.F. and Qian, W.W. (2019), "Seismic performance of concrete-encased CFST column to steel beam joints with different connection details", Eng. Struct., 204, 109875. https://doi.org/10.1016/j.engstruct.2019.109875.
- Pan, Z. and Li, B. (2013), "Truss-arch model for shear strength of shear-critical reinforced concrete columns", J. Struct. Eng., 139(4), 548-560. https://doi.org/36.10.1061/(ASCE)ST.1943-541X.0000677.
- Patel, V.I., Hassanein, M.F., Thai, H.T., Abadi, H.A., Elchalakani, M. and Bai, Y. (2019), "Ultra-high strength circular short CFST columns: axisymmetric analysis, behaviour and design", Eng. Struct., 179(1), 268-283. https://doi.org/10.1016/j.engstruct.2018.10.081.
- Qian, W.W., Li, W., Han, L.H. and Zhao, X.L. (2016), "Analytical behavior of concrete-encased CFST columns under cyclic lateral loading", J. Constr. Steel Res., 120(4), 206-220. https://doi.org/11.10.1016/j.jcsr.2015.12.018.
- Xue, J., Zhou, C. and Lin, J. (2018), "Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings", Steel Compos. Struct., 29(4), 451-464. https://doi.org/10.12989/scs.2018.29.4.451.
- Xue, Y.C., Yang, Y. and Yu, Y.L. (2020), "Shear strength model for steel reinforced concrete composite members: Short columns and deep beams", Eng. Struct., 216, 110748. https://doi.org/10.1016/j.engstruct.2020.110748.
- YB 9082-2006. Technical specification of steel-reinforced concrete structures. Beijing: Metallurgical Industry Press; 2006.
- Zarringol, M., Thai, H.T., Ngo, T. and Patel, V. (2020), "Behaviour and design calculations of rectangular CFST beam-columns with slender sections", Eng. Struct., 222, 111142. https://doi.org/10.1016/j.engstruct.2020.111142.
- Zhang, J., Li, X., Cao, W. and Yu, C. (2019), "Cyclic behavior of steel tube-reinforced high-strength concrete composite columns with high-strength steel bars", Eng. Struct., 189(6), 565-579. https://doi.org/17.10.1016/j.engstruct.2019.04.006.
- Zhou, K. and Han, L.H. (2019), "Modelling the behaviour of concrete-encased concrete-filled steel tube (CFST) columns subjected to full-range fire", Eng. Struct., 183, 265-280. https://doi.org/10.1016/j.engstruct.2018.12.100.