• Title/Summary/Keyword: terramechanics

Search Result 10, Processing Time 0.018 seconds

Dynamic Analysis of Underwater Test Collector on Extremely Soft Soil (해저연약지반 시험집광기의 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Yeong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.222-228
    • /
    • 2008
  • We conducted a dynamic analysis of an underwater test collector, which operates on extremely soft soil of deep-seafloor. The underwater test collector consists of nodule pick-up device, vehicle tracks, nodule crusher, loading frame and electric-electronic system. The weight of underwater test collector is about 8600 kg. The average normal pressure, that the underwater test collector supports, is about 6.0 kPa. The dynamic analysis model of underwater test collector is developed using commercial software RecurDyn-LM and Visual Fortran 90. A terramechanics model of extremely soft soil is implemented to the software based on user-written subroutine and applied to the dynamic analysis of the underwater test collector model. The dynamic responses of test collector are studied with respect to track velocities, terrain conditions, and coefficients of added mass and drag.

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Multibody Dynamic Analysis of a Tracked Vehicle on Soft Cohesive Soil (연약지반 무한궤도차량의 다물체 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.69-74
    • /
    • 2007
  • This paper is concerned about the dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicles and a pick-up device. The motion of the pick-up device, relative to the vehicle chassis, is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of commercial software. A terramechanics model of cohesive soft soil is implemented with the software and applied to a dynamic analysis of the test miner model. The dynamic responses of the test miner are studied with respect to four different types of terrain conditions.

Prediction of Maneuverability and Efficiency for a Mobile Robot on Rough Terrain through the development of a Testbed for Analysis of Robot-terrain interaction (지형-로봇간의 상호작용 분석 장치의 개발을 통한 야지 주행 로봇의 기동성 및 효율성 예측)

  • Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.116-128
    • /
    • 2013
  • This paper focuses on development of a testbed for analysis of robot-terrain interaction on rough terrain and also, through one wheel driving experiments using this testbed, prediction of maximum velocity and acceleration of UGV. Firstly, from the review regarding previous researches for terrain modeling, the main variables for measurement are determined. A testbed is developed to measure main variables related to robot-terrain interaction. Experiments are performed on three kinds of rough terrains (grass, gravel, and sand) and traction-slip curves are obtained using the data of the drawbar pull and slip ratio. Traction-slip curves are used to predict driving performance of UGV on rough terrain. Maximum velocity and acceleration of UGVs are predicted by the simple kinematics and dynamics model of two kinds of 4-wheel mobile robots. And also, driving efficiency of UGVs is predicted to reduce energy consumption while traversing rough terrains.

Predicting Maximum Traction for Improving Traversability of Unmanned Robots on Rough Terrain (무인 로봇의 효율적 야지 주행을 위한 최대 구동력 추정)

  • Kim, Ja-Young;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.940-946
    • /
    • 2012
  • This paper proposes a method to predict maximum traction for unmanned robots on rough terrain in order to improve traversability. For a traction prediction, we use a friction-slip model based on modified Brixius model derived empirically in terramechanics which is a function of mobility number $B_n$ and slip ratio S. A friction-slip model includes characteristics of various rough terrains where robots are operated such as soil, sandy soil and grass-covered soil. Using a friction-slip model, we build a prediction model for terrain parameters on which we can know maximum static friction and optimal slip with respect to mobility number $B_n$. In this paper, Mobility number $B_n$ is estimated by modified Willoughby Sinkage model which is a function of sinkage z and slip ratio S. Therefore, if sinkage z and slip ratio are measured once by sensors such as a laser sensor and a velocity sensor, then mobility number $B_n$ is estimated and maximum traction is predicted through a prediction model for terrain parameters. Estimation results for maximum traction are shown on simulation using MATLAB. Prediction Performance for maximum traction of various terrains is evaluated as high accuracy by analyzing estimation errors.

Multibody Dynamic Analysis of a Test Miner on Soft Cohesive Soil (연약지반 시험집광기의 다물체 동력학 해석)

  • KIM HYUNG-WOO;HONG SUP;CHOI JONG-SU;YEU TAE-KYEONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.277-282
    • /
    • 2004
  • This paper concerns about dynamic analysis of an underwater test miner, which operates on cohesive soil. The test miner consists of tracked vehicle and pick-up. device. The motion oj pick-up device relative to the vehicle chassis is controlled by two pairs of hydraulic cylinders. The test miner is modeled by means of a commercial software. A terramechanics model of cohesive soft soil is implemented to the software and applied to dynamic analysis of the test miner model. The dynamic responses of test miner are studied with respect to of four different types of terrain conditions.

  • PDF

Track System Interactions Between the Track Link and the Ground (궤도시스템의 궤도링크와 연약지반과의 상호 접촉연구)

  • Ryu, Han-Sik;Jang, Jung-Sun;Choi, Jin-Hwan;Bae, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1711-1718
    • /
    • 2004
  • When the tracked vehicle is running on various types of terrain, the physical properties of the interacting ground can be different. In this paper, the interactions between track link and soft soil ground are investigated using static sinkage theory of soil ground. Grouser surfaces of a track link and triangular patches of ground are implemented for contact detection algorithm. Contact force at each segment area of a track link is computed respectively by using virtual work concept. Bekker's static soil sinkage model is applied for pressure-sinkage relationship and shear stress-shear displacement relationship proposed by Janosi and Hanamoto is used for tangential shear forces. The repetitive normal loads of a terrain are considered because a terrain element is subject to the repetitive loading of the roadwheels of a tracked vehicle. The methods how to apply Bekker's soil theory for multibody track system are proposed in this investigation and demonstrated numerically by high mobility tracked vehicle.

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.311-314
    • /
    • 2006
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely soft cohesive soil is applied to the self-propelled miner. The hydrodynamic forces and moments are included in the dynamic models of vehicle and lifting pipe system. Hinged and fixed constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-b method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

  • PDF

Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

  • Lim, Yujin;Le, Viet Dinh;Bahati, Pierre Anthyme
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.237-250
    • /
    • 2021
  • A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.