• Title/Summary/Keyword: terminal voltages

Search Result 80, Processing Time 0.024 seconds

Response of angled two-strip transmission lines to the incdent angle of an external electromagnetic field, I : Circuit-concept analysis (외부 전자파의 입사방향에 대한 각진 두 스트립으로 구성된 전송선의 반응, I:회로개념의 해석)

  • 홍성용;김세윤;라정웅
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.3-9
    • /
    • 1992
  • The reponse of the angled two-strip transmission lines illuminated by an external electromagnetic field is estimated by using the circuit concept approach. Calculated terminal voltages reveal convergence to a fixed value as the number of discretization increases. The amplitude patterns of two terminal voltages to all the direction and polarization of the incident field are also calculated.

  • PDF

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

A study on algorithm of AT feeding systems (AT 급전계통 전기철도 해석 알고리즘 연구)

  • Choo, Dong-Woog;Kim, Jae-Chul;Kim, Nak-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1226-1228
    • /
    • 2001
  • In this paper, the modified simulation algorithms of the Auto Transformer (AT) feeding electric train were proposed. To obtain terminal voltage of train by using equivalent circuit of the AT feeding system, the iterative method is proposed for which determine the train voltages. The train voltages are iteratively calculated from the system voltage drop and line impedance. In the case study, the proposed method is verified from actual operation data of the Kwa-Chon line. Also it is verified that the proposed method can be extent to the multi-train simulation tool. The terminal voltage of the multi-train can be calculated by using superposition principle and it is easily applied to the proposed method. Therefore, the proposed method can be a solution for the complexity of the circuit analysis in the existing methods.

  • PDF

A Study Algorithm of AT Feeding Systems (AT 급전계통 해석 알고리즘 연구)

  • Chu, Dong-Uk;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.174-179
    • /
    • 2002
  • In this paper, the modified simulation algorithms of the Auto Transformer (AT) feeding electric train system were proposed. To obtain terminal voltage of train by using equivalent circuit or the AT feeding system, the iterative method is proposed for which determine the train voltages. The train voltages are iteratively calculated from the system voltage drop and line impedance. In the carte study, the proposed method is verified from actual operation data of the Kwa-Chon line. Also it is verified that the proposed method can be extent to the multi-train simulation tool. The terminal voltage of the multi-train can be calculated by using superposition principle and it is easily applied to the proposed method. Therefore, the proposed method can be a solution for the complexity of the circuit analysis in the existing methods.

A floating resistor with positive and negative resistance operating at lower supply voltages

  • Tantry, Shashidhar;Oura, Takao;Yoneyama, Teru;Asai, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.325-328
    • /
    • 2002
  • In this paper. we propose a floating resistor with positive and negative resistance operating at lower supply voltages. The circuit uses only two transistors between the supply voltages. which enable to operate it at low supply voltages. Moreover. the circuit uses fewer number of transistors compared to the reported work. The gate terminal is used in this circuit for the current addition/subraction at the terminals of resistor. The characteristic of the proposed circuit is verified using HSPICE for the power supply +/-1.5V.

  • PDF

Controller Design for Dynamic Voltage Restorers by use of PQR Power Theory II - Determine The Compensation Voltages (PQR 순시전력이론에 의한 Dynamic Voltage Restorer의 제어기 설계 II -보상전 압의 결정)

  • Kim H.S.;Lee S.J.;Sul S.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.404-409
    • /
    • 2003
  • This paper discusses how to generate the reference compensation voltages in Dynamic Voltage Restorers (DVR) by use of PQR power theory Sensed three-phase terminal voltages are transformed to PQR coordinates without time delay. Since the reference voltages in PQR coordinates are do values, the voltage controller for DVRs is simple and easy to design. Proposed control method can be implemented by feedforward controllers or by feedback controllers. This paper verified the theory in the feedforward controller of a DVR by experiments.

  • PDF

Determining the Compensation Voltages for Dynamic Voltage Restorers by use of PQR Instantaneous Power Theory (PQR 순시전력이론에 의한 동적전압보상기의 보상전압 결정)

  • 김효성;이상준;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 2003
  • This paper discusses how to generate the reference compensation voltages in Dynamic Voltage Restorers (DVR) by use of PQR instantaneous power theory. Sensed three-phase terminal voltages are transformed to PQR coordinates without time delay. Since the reference voltage in PQR coordinates is a single dc value, the voltage controller for DVRs is simple and easy to design. Proposed control method can be implemented by feedforward controllers or by feedback controllers. This paper verified the theory by a feedforward controller of a DVR with simulation and experiment.

Sensorless Algorithm of Brushless DC Motors Using Terminal Voltage of the One Phase (한상의 단자전압을 이용한 BLDC 전동기 센서리스 알고리즘)

  • Yoon, Yong-Ho;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • This paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor. Depending on the terminal voltage sensing rotor position, active filter is used for position information. This leads to a significant reduction in the component device of the sensorless circuit. Therefore this is a advantage for the cost saving and size reduction. With indirect sensing methods based on detection of the terminal voltage that require active filtering, the position information needs the six divider section by PLL circuit, the binary counter and johnson counter by the EPLD. Finally, this algorithm can estimate the rotor position information similar to Hall-sensor sticked the three-phase BLDC motor. As a result, the method described that it is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed. Experimental and simulation results are included to verify the proposed scheme.

Sensorless Speed Control of Brushless DC Motor using One Phase Terminal Voltage (한 상의 단자전압을 이용한 브러시리스 전동기의 센서리스 속도제어)

  • Park Sang-Hoon;Lee Seung-Jun;Yoon Yong-Ho;Lee Byoung-Kuk;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.16-18
    • /
    • 2006
  • This paper presents a sensorless speed control of Brushless DC motor using terminal voltage of one phase. Rotor position information is extracted by indirectly sensing the Back-EMF from only one of the three terminal voltages for a three phase BLDC motor. This is a advantage for the cost saving and size reduction. Also, it can be substituted for conventional Hall-IC or encoder applied to position control.

  • PDF

A Study of the Terminal Developement for Distribution Automation System (배전 자동화용 단말장치 기술 개발및 전원 구성에 관한 연구)

  • Kye, Moon-Ho;Kim, Jong-Soo;Jung, Je-Wook;Nam, Hyo-Sung;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.902-904
    • /
    • 1993
  • This paper contains the terminal developement for the feeder remote unit in Korea Distribution Automation System. This terminal unit has serval functions in order to do feeder auotmation as following, the open/close controls and gathering status informations of switchgears, getting line currents and voltages, distribution fault. So FRU has four modules to do those functions-Logic Controller, Relay Controller, Data Acquisition, Display, Power Supply etc. The FRU should be on allays, so AC power is supplied before & behind the switchgear. Power Supply is made up with AC/DC, DC/DC, Battery and/or SOLAR CELLS & CONTROLLER. It is important for the supply to protect against some Surges, because surges are happened so many times. Surge test is fellowing the standard IEC 801-5 or IEEE 587.

  • PDF