• 제목/요약/키워드: terminal cells

검색결과 1,080건 처리시간 0.023초

랭킹개미군전략을 이용한 리포팅셀 위치관리시스템 최적 설계 (Optimal Design of Reporting Cell Location Management System using Ranking Ant Colony System)

  • 김성수;김근배
    • 산업공학
    • /
    • 제19권2호
    • /
    • pp.168-173
    • /
    • 2006
  • In the Reporting Cell Location Management (RCLM) system, a subset of cells in the network is designated as the reporting cells. Each mobile terminal performs location update only when it enters one of these reporting cells. When a call arrives, the paging is confined to the reporting cell the user last reported and the neighboring bounded non-reporting cells. Frequent location update may result in degradation of quality of service due to interference. Miss on the location of a mobile terminal will necessitate a search operation on the network when a call comes in. We must decide the number of reporting cells and which cell should be reporting cell to balance the registration (location update) and search (paging) operations to minimize the cost of RCLM system. This paper proposes a ranking ant colony system (RACS) for optimization of RCLM system.

임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현 (Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells)

  • 김현주
    • 생명과학회지
    • /
    • 제8권1호
    • /
    • pp.102-108
    • /
    • 1998
  • Gltcosylphosphatidylinositol (GPI)에 의해 고정된 단백질의 초기 형태는 골지체에서의 직접적인 processing을 수행하기 위한 아미노와 카르 복시 말단의 hydrophobic signal sequence를 소유하고 있다. 앞서, mouse 임파구로부터 NAD;arginine ADP-ribosyltransferase (Yac-1)가 클로닝되었으며 Yac-1 transferase의 아미노산 배열을 추정해 본 결과, hydrophobic 아미노와 카르복시 말단을 포함하고 있었으며 이는 GPI-anchroed 단백질들의 알려진 signal sequence와 일치하였다. 미 transferase는 야생형의 cDNA로 transfection된 NMU (rat mammary adenocarcinoma) cell의 표면에 존재하였으며 phosphoatidylinosotol-specific phospholipase C에 의해 방출되어졌다. 카르복시 말단의 hydrophobic sequence가 없는 돌연변이체는 수용성이며 분비성인 transferase를 생산하였다. 이러한 사실은 카르복시 말단의 sequence가 없는 돌연변이체는 수용성이며 분비성인 transferase를 생산하였다. 이러한 사실은 카르복시 말단의 sequence가 GPI의 부착에 중요함을 나타내준다.

  • PDF

COOH-Terminal Animo Acids of Tethered-Buman Glycoprotein Bormone $\alpha$-Subunit Play an Important Role for Secretion

  • Min, K.S;Yoon, J.K.
    • 한국가축번식학회지
    • /
    • 제26권4호
    • /
    • pp.395-399
    • /
    • 2002
  • Human chorionic gonadotropin (hCG) is a member of the glycoprotein hormone family which includes FSH. hCG TSH. These hormone family is characterized by a heterodimeric structure composed a common $\alpha$-subunit noncovalently linked to a hormone specific $\beta$-subunit. To determine u and $\beta$ -subunits can be synthesized as a single polypeptide chain (tethered-hCG) and also display biological activity, the tethered-hCC and -FSH molecule by fusing the carboxyl terminus of the hCG $\beta$-subunit to the amino terminus of the $\alpha$-subunit was constructed. To determine the importance of $\alpha$ COOH -terminal amino acid, we also deleted the $\alpha$ COOH-terminal amino acids. The expressing vectors were transfected into CHO-K 1 cells. The tethered-wthCG and -wtFSH was efficiently secreted. The $\alpha$ Δ83hCG and $\alpha$ Δ 83FSH mutants had no secretion. These results are the first conclusive evidence that COOH-terminal amino acids are very important for secretion in human glycoprotein hormone $\alpha$-subunit. These results demonstrated that the $\alpha$ Δ83hCG and $\alpha$ Δ 83FSH mutants could be play a pivotal role in the secretion of tethered-molecule.

Anti-Angiogenic Activity of Mouse N-/C-terminal deleted Endostatin

  • Cho, Hee-Yeong;Kim, Woo-Jean;Lee, Sae-Won;Kim, Young-Mi;Choi, Eu-Yul;Park, Yong-Suk;Kwon, Young-Guen;Kim, Kyu-Won
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.206-211
    • /
    • 2001
  • Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis and the growth of several primary tumors. However, the opinions on the activity of endostatin derivatives deleted N- or C- terminal are still controversial. In this regard, we produced mouse endostatin and its derivatives in the prokaryotic system, and studied their anti-tumor activity. The [$^3H$]-thymidine incorporation assay demonstrated that N-terminal deleted mouse endostatin, and a C- and N-terminal deleted mutant, effectively inhibited the proliferation of human umbilical vein endothelial cells (HUVECs). The biological activity of endostatin was also shown by its in vivo anti-angiogenic ability on the chorioallantoic membrane (CAM) of a chick embryo. Treatment of $200\;{\mu}g$ of mouse endostatin, or N-terminal deleted mouse endostatin, inhibited capillary formation of CAM 45 to 71%, which is comparative to a 80% effect of positive control, $1\;{\mu}g$ of retinoic acid. An in vivo mouse tumor growth assay showed that N-terminal deleted mouse endostatin, and the N-/C-terminal deleted mutant, significantly repressed the growth of B16F10 melanoma cells in mice as did the full-length mouse endostatin. According to these results, N-and N-/C-terminal deleted mouse endostatins are the potent inhibitors of tumor growth and angiogenesis.

  • PDF

원지와 석창포 혼합추출액의 pCT105로 유도된 신경세포암 세포주에 대한 항치매 효과 (The Effects of anti-Alzheimer in pCT105-induced Neuroblastoma cell lines by Radix Polygalae and Rhizoma Acori Graminei mixture extract)

  • 이성률;강형원;김상태;류영수
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.1037-1049
    • /
    • 2003
  • Numerous lines of evidence indicate that some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the amyloid precursor protein (APP). Most research has focused on the amyloid 6 (M). However, the possible role of other cleaved products of APP is less clear. Lately It has been reported that a recombinant carboxy-terminal 105 amino acid fragment (CT105) of APP induced strong nonselective inward currents in Xenopus oocyte. In a brain with Alzheimer's disease (AD), to investigate the roles of carboxyl-terminal fragment (CT105) of amyloid precursor protein (APP) in apoptosis processes possibly linked to neurodegeneration associated with AD, we examined the effects of the CT of APP with 105 amino acid residues (CT105) on the alteration of apoptosis triggers in neubroblastoma cells. We have investigated whether Radix Polygalae and Rhizoma Acori Graminei mixture extract (RP+RAG) inhibits CT105-induced apoptosis of neuroblastoma cells. We found that RP+RAG inhibits CT105-induced apoptosis in SK-N-SH cells. Treatment of the cells with RP+RAG inhibited CT105-induced DNA fragmentation and Tunel assay of nuclear chromatin and inhibited the caspase-3 expression in SK-N-SH cells. As the result of this study, In RP+RAG group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of neuroblastoma cells by CT105 expression is promoted. These results indicate that RP+RAG possess strong inhibitory effect of apoptosis in the nervous system and repair effect against the degeneration of neuroblastoma cells by CT105 expression

Vitexin, an HIF-1α Inhibitor, Has Anti-metastatic Potential in PC12 Cells

  • Choi, Hwa Jung;Eun, Jae Soon;Kim, Bang Geul;Kim, Sun Yeou;Jeon, Hoon;Soh, Yunjo
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.291-299
    • /
    • 2006
  • Vitexin, a natural flavonoid compound identified as apigenin-8-C-${\beta}$-D-glucopyranoside, has been reported to exhibit antioxidative and anti-inflammatory properties. In this study, we investigated its effect on hypoxiainducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) in rat pheochromacytoma (PC12), human osteosarcoma (HOS) and human hepatoma (HepG2) cells. Vitexin inhibited HIF-$1{\alpha}$ in PC12 cells, but not in HOS or HepG2 cells. In addition, it diminished the mRNA levels of hypoxia-inducible genes such as vascular endothelial growth factor (VEGF), smad3, aldolase A, enolase 1, and collagen type III in the PC12 cells. We found that vitexin inhibited the migration of PC12 cells as well as their invasion rates, and it also inhibited tube formation by human umbilical vein endothelium cells (HUVECs). Interestingly, vitexin inhibited the hypoxia-induced activation of c-jun N-terminal kinase (JNK), but not of extracellular-signal regulated protein kinase (ERK), implying that it acts in part via the JNK pathway. Overall, these results suggest the potential use of vitexin as a treatment for diseases such as cancer.

Detection of Mitotic Centromere-Associated Kinesin (MCAK) During Cell-Cycle Progression of Human Jurkat T Cells Using Polyclonal Antibody Raised Against Its N- Terminal Region Overexpressed in E. coli

  • Jun, Do-Youn;Rue, Seok-Woo;Kim, Byung-Woo;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.912-918
    • /
    • 2003
  • Mitotic centromere-associated kinesin (MCAK), which is a novel kinesin with a central motor domain, is believed to playa role in mitotic segregation of chromosome during the M phase of the cell cycle. In the present study, it is shown that a rabbit polyclonal antibody has been produced using the N-terminal region (187 aa) of human MCAK expressed in E. coli as the antigen. To express the N-terminal region in E. coli, the MCAK cDNA fragment encoding N-terminal 187 aa was obtained by PCR and was then inserted into the pET 3d expression vector. Molecular mass of the N-terminal region overexpressed in the presence of IPTG was 23.2 kDa on SDS-PAGE, and the protein was insoluble and mainly localized in the inclusion body that could be easily purified from the other cellular proteins. The N-terminal region was purified by electro-elution from the gel after the inclusion body was resolved on the SDS-PAGE. The antiserum obtained after tertiary immunization with the purified protein specifically recognized HsMCAK when subjected to Western blot analysis, and showed a fluctuation of the protein level during the cell cycle of human Jurkat T cells. Synchronization of the cell-cycle progression required for recovery of cells at a specific stage of the cell cycle was performed by either hydroxyurea or nocadazole, and subsequent release from each blocking at 2, 4, and 7 h. Northern and Western analyses revealed that both mRNA and protein of HsMCAK reached a maximum level in the S phase and declined to a basal level in the G1 phase. These results indicate that a polyclonal antibody raised against the N-terminal region (187 aa) of HsMCAK, overexpressed in E. coli, specifically detects HsMCAK (81 kDa), and it can analyze the differential expression of HsMCAK protein during the cell cycle.

The C-terminal Region of Human Tau Protein with Ability of Filament Formation

  • Chung, Sang-Ho
    • Animal cells and systems
    • /
    • 제1권2호
    • /
    • pp.317-321
    • /
    • 1997
  • Tau protein is one of the microtubule-associated proteins in the mammalian brain. In Alzheimer's disease, tau protein is immobilized in the somatodendritic compartment of certain nerve cells, where it forms a part of the paired helical filament (PHF). To understand the role of tau protein in the formation of PHF, a recombinant human tau protein expressed in Escherichia coli and five synthetic peptide fragments (peptide 1 to peptide 5), corresponding to the C-terminal region of tau protein, were prepared and their ability in self-assembly to form filamentous structures was examined. The recombinant human tau protein formed short rod-like structures in 0.1M MES buffer containing 1 mM $MgCI_2$, while a synthetic peptide fragment 1 containing 55 amino acid residues could assemble into a lot of long filamentous structures in water and particularly twisted helical structures in 0.1M MES buffer containing 1 mM $MgCI_2$. This suggests that the C-terminal region possesses a filament-forming ability and may be related to the formation of the helical structure by providing a powerful filament-forming driving force.

  • PDF

Essential Role for c-jun N-terminal Kinase on tPA-induced Matrix Metalloproteinase-9 Regulation in Rat Astrocytes

  • Lee, Sun-Ryung
    • Animal cells and systems
    • /
    • 제10권2호
    • /
    • pp.79-83
    • /
    • 2006
  • Tissue plasminogen activator (tPA) is used to lyse clots and reperfuse brain in ischemic stroke. However, sideeffects of intracerebral hemorrhage (ICH) and edema limit their clinical application. In part, these phenomena has been linked with elevations in matrix metalloproteinase-9 (MMP-9) in neurovascular unit. However little is known about their regulatory signaling pathways in brain cells. Here, I examine the role of MAP kinase pathways in tPA-induced MMP-9 regulation in rat cortical astrocytes. tPA $(1-10\;{\mu}g/ml)$ induced dose-dependent elevations in MMP-9 and MMP-2 in conditioned media. Although tPA increased phosphorylation in two MAP kinases (ERK, JNK), only inhibition of the JNK pathway by the JNK inhibitor SP600126 significantly reduced MMP-9 upregulation. Neither ERK inhibition with U0126 nor p38 inhibition with SB203580 had any significant effects. Taken together, these results suggest that c-jun N-terminal kinase (JNK) plays an essential role for tPA-induced MMP-9 upregulation.

Analysis of Erythropoietin Glycoform Produced by Recombinant CHO Cells Using the Lectin-Blotting Technique

  • Chang, Kern-Hee;Kim, Kyung-Soo;Kim, Jung-Hoe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.40-43
    • /
    • 1998
  • The glycosylation pattern of Erythropoietin (EPO), produced by recombinant CHO cells, was studied using the simple and rapid technique of 'Lectin-blotting'. In this experiment we used three different kinds of lectins, MAA(Maackia amurensis agglutinine), RCA(Ricinus communis agglutinine), and DSA(Datura stramonium agglutinine), which bind to the terminal sialic acid, galactose, and the N-acetyllactosamine chain respectively. The lectin-blotting technique was used to analyze the carbohydrate structure of EPO produced in the presence of two physiologically active chemical compounds, ammonium and chloroquine. The effect of the ammonium ion on the glycosylation of EPO was studied because it accumulated in the medium mainly as a by-product of glutamine matabolism. Ammonium chloride significantly inhibited the sialylation of the terminal galactose residue at concentrations of 8mM or more. Chloroquine, a potent inhibitor of glycosylation, inhibited terminal sialylation at concentrations of 100 and 200 $\mu$M, and at a concentration of 300 $\mu$M, also inhibited Nacetyllactosamine chain synthesis.

  • PDF