• Title/Summary/Keyword: terephthalic acid

Search Result 73, Processing Time 0.024 seconds

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent

  • Park, Kyung-Ho;Sohn, Jeong-Soo;Kim, Jong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.478-481
    • /
    • 2001
  • The spent petrochemical catalyst used in the manufacturing process of terephthalic-acid contains valuable metals such as cobalt and manganese. To recover these metals, sulfuric acid leaching was performed with hydrogen peroxide as a reducing agent. Low extractions of Mn, Co and Fe were obtained by sulfuric acid leaching without reducing agent. With adding hydrogen peroxide as a reducing agent, the high extraction of these metals could be obtained. Different from general leaching experiment, the extraction rates of metal components were decreased with increasing reaction temperature in this case. Under the optimum condition, the extraction rates of Mn, Co and Fe were 93.0%, 87.0% and 100% respectively.

  • PDF

Determination of Tb(III) in aqueous solution by fluorescence spectrometry (형광분광법에 의한 수용액 중의 Tb(III) 정량)

  • Lee, Sang Hak;Bae, Zun Ung;Chung, Hae Young;Choi, Sang Seob
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.274-281
    • /
    • 1997
  • Methods to determine terbium(III) ion in aqueous solution by measuring the enhanced fluorescence intensity of terbium(III)-terephthalic acid(TPA) complex ion have been studied. The optimum analytical conditions for pH, excitation wavelength and concentration of TPA were found to be 6.0, 260nm and $4.0{\times}10^{-4}M$, respectively. The fluorescence intensity of the terbium(III) complex ion was further increased with addition of trioctylphosphine oxide (TOPO). In this case Triton X-100 was used to dissolve TOPO in aqueous solution. When TOPO was used, the optimum analytical conditions for pH, excitation wavelength, and concentrations of TPA, TOPO and Triton X-100 were found to be 4.5, 285nm. $4.0{\times}10^{-4}M$, $5.0{\times}10^{-5}M$, and 0.05%, respectively. Under the optimum experimental conditions, calibration curve for Tb(III) was linear over the range from $4.0{\times}10^{-8}M$ to $4.0{\times}10^{-5}M$ and the detection limit was $4.0{\times}10^{-8}M$. When TOPO was used, the concentration range of linear response, and the detection limit were $4.0{\times}10^{-9}M$ to $2.0{\times}10^{-6}M$, and $4.0{\times}10^{-9}M$, respectively. Effects of interferences from various cations for the determination of terbium(III) ion were also investigated.

  • PDF

Growth Characteristics and Optimal Culture Conditions of Bacterial Strains Degrading Ethylene Glycol and Terephthalic Acid in Polyester Weight Loss Wastewater (Polyester 감량폐수 중에 존재하는 Ethylene Glycol과 Terephthalic Acid를 분해하는 Bacteria 균주들의 성장특성과 최적 배양조건)

  • 김정목;김재훈조무환
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 1993
  • Strains degrading ethylene glycol(EG) and terephthalic acid(TPA) were isolated from water systems, and identified as Pseudomonas sp. They were named as Pseudomonas sp. EAW for EG and as Pseudomonas sp. TS2 for TPA. The optimal culture conditions of temperature, pH and nitrogen source were found to be $35^{\circ}C$, 7.5 and ammonium sulfate, respectively. The growth of strains and removal efficiency was slightly promoted by trace elements such as niacin and biotin in case of EG, and by trace elements such as $Na_2MoO_4{\cdot}2H_2O$ and thiamin i case of TPA. With increasing inoculation sloe for batch culture, the removal efficiency of EG by the strain EAW was conspicuously increased, while the removal efficiency of TPA by the strain TS2 was not changed as much as that of EG. The growth rate of the strain EAW was much more decreased than that of the strain TS2 in the enrichment medium, as the frequency of repeated-batch culture in the rich-medium increased. in case of real wastewater, growth rate and removal efficiencies of EG and TPA were lower than those in the enrichment medium. $COD_{Mn}\;and\;COD_{Cr}$ removal efficiencies after 48 hrs batch culture in real wastewater were 89% and 93%, respectively. The specific growth rate was inhibited when the initial concentration of EG or TPA was more than 25g/L.

  • PDF

The development of membranes for high temperature PEMFC

  • Lee, Doo-Yeon;Sun, Hee-Young;Cho, Chung-Kun;Lee, Myung-Jin;Seung, Do-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.184-184
    • /
    • 2006
  • We have succeeded in the preparation of high molecular weight polybenzimidazoles by solution polycondensation of 3,3'-diaminobenzidine tetrahydrochloride with isophthalic acid, terephthalic acid, or with their derivatives using polyphosphoric acid both as solvent and as condensing agent. Also, we modified phosphoric acid into fluoroalkyl-phosphonic acids[F-PA]. The main reasons are as follows, first of all F-PAs are stronger acids than PA and alkylphosphonic acids which should promote proton hopping and transport. In addition, F-PA has weaker adsorption onto Pt which help to prevent electrocatalyst poisoning and promote higher oxygen reduction activity. The ionic conductivity of 85%-H3PO4 doped membranes show $10^{-2}\;Scm^{-1}\;to\;3{\times}10^{-2}\;Scm^{-1}\;at\;150^{\circ}C$ MEA with 2 %-added electrolyte shows slightly higher cell voltage than the others.

  • PDF

Preparation of PET non-woven by Electro-spinning (전기 방사를 이용한 PET(Polyethylene terephthalate) 부직포 제조)

  • 김관우;이근형;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.177-178
    • /
    • 2002
  • 일반적으로 폴리에틸렌테레프탈레이트(polyethylene terephthalate)는 에틸렌글리콜(ethylene glycol)과 테레프탈산(terephthalic acid) 또는 디메틸렌 테레프탈레이트(dimethylene terephthalate)를 중합시켜 만든다[1]. 폴리에스테르는 전도성 필름, 전기전자분야, 청량음료의 병 등으로 널리 사용되고 있다. 또한 뛰어난 강도, 내열성을 이용하여 자동차분야, 전기분야에서 금속, 페놀수지를 대체하는 용도로 사용되고 있다. (중략)

  • PDF

Precipitation of Manganese in the p-Xylene Oxidation with Oxygen-Enriched Gas in Liquid Phase

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The liquid phase oxidation of p-xylene has been carried out with oxygen-enriched gas, and the manganese component was precipitated probably via over-oxidation to $Mn^{4+}$. The precipitation increased with rising oxygen concentration in the reaction gas and occurred mainly in the later part of the oxidation. The activity of the reaction decreased, and the blackening of the product and side reactions to carbon dioxide increased with the degree of precipitation. Precipitation can be decreased with the addition of metal ions, such as cerium, chromium and iron.

Wholly Aromatic Polyesters Containing NLO Chromophores in the Side Chain

  • Lee, Seok Hyeon;Im, Gi Cheon;Jeon, Jong Taek;Song, Seok Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • A series of poly(1,4-phenylene terephthalates) with pendant NLO chromophores was prepared by the solution polycondensation of 2,5-NLO chromophore substituted terephthalic acid with hydroquinone. The polymers obtained gave satisfactory NMR and elemental analysis results when taking into account their expected structures and the inherent viscosity value proved the polymeric character of all polymers. DSC, optical polarizing microscopy and WAXS studies revealed that none of these polymers exhibited liquid crystalline mesophases. Preliminary results on NLO properties of these polymers showed a surprisingly large second harmonic signal relative to a Y-cut quartz plate.

Analysis of Cotton/Polyester Fabrics using Pyrolysis Gas Chromatograpy (열분해-GC에 의한 면/폴리에스터 혼방 직물의 분석)

  • 조미숙;김명덕;박성우;윤기준;남재도;이종훈;이영관
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.271-274
    • /
    • 2003
  • A pyrolysis gas-chromatographic method (Py-GC) was utilized for the identification as well as the content measurement of textile materials. Py-GC was applied to natural cotton fiber, synthetic polyester fiber, and their blended fabrics. The characteristic peaks originated from thermally decomposed products were observed, and the area of peak increased with the content of polyester. The products of pyrolized polyester were identified as benzoic acid terephthalic acid, and vinyl benzoic acid, which were characterized by mass spectrometry. This analytic method of offered a quantitative means to identify the content of cotton and polyester.

Pretreatment condition Optimization of Hydrolysis and Water Absorption Behavior of PET Fibrous Assembly (전처리 조건에 따른 PET 섬유 집합체의 가수분해 및 흡수성 거동 연구)

  • Lee, Jun-Hee;Lee, Kwang-Woo;Seo, Mal-Yong;Kang, Ji-Man;Kim, Book-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.88-88
    • /
    • 2012
  • Applied decanol and nonanol provided more weight loss than applied heptanol and octanol. PET using decanol showed the highest weight loss than other alcohols applied. Sodium hydroxide caused weight loss in PET fabrics because terephthalic acid and ethylene glycol were separated by the hydrolysis of the ester group in the PET chains. The terephthalic acid was neutralized to disodium terephthalate and the reaction results in weight loss in the PET fabrics. The weight loss increased with increasing hydrolysis time because disodium terepthalate was water soluble and the reaction was not reached at equilibrium. Pretreatment alcohols increased water absorption, especially in case of PET applied decanol revealed the highest water absorption. PET applied decanol showed 400% of initial water absorption, and PET applied nonanol revealed 250% of initial water absorption. However, the pristine PET showed 90% initial water absorption, and it revealed 230% maximum water absorption as compared to other alcohols. Also, PET applied decanol, nonanol, octanol and heptanol showed 600%, 400%, 350% and 300% maximum water absorption, respectively. The result implied alcohol length affected on water absorption of PET fibrous assembly. This implies that the microvoid of the PET surface hold water molecules. Surface morphology of PET appears that the pretreatment reagent attacks almost entire surface of the fiber, causing surface etching. As the surface etching progresses, it propagates inside the fiber, resulting in the formation of elongated cavities on the surface.

  • PDF

Synthesis and Biodegradation Behavior of Poly(ethylene terephthalate) Oligomers (폴리(에틸렌 테레프탈레이트)(PET) 올리고머의 합성과 생분해 거동)

  • Lee, Chan-Woo;Chung, Jin-Do
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.198-202
    • /
    • 2009
  • Oligo(ethylene terephthalate)(OET), oligo(ethylene succinate-co-terephthalate)(OEST) and oligo(butylene succinate-co-terephthalate)(OBST), which are part of the poly(ethylene terephthalate)(PET) oligomer, were synthesized. Degradation test of oligomers carried out by the presence of lipase PS. There were two objectives in the experiment: first, to measure the weight remaining of the PET oligomer as increasing degradation time, and second to examine the degradation mechanism by analyzing the resulting degraded product. In the synthesis of OEST and OBST, by controlling the feed ratio of both OEST and OBST, we were able to obtain oligomer of different composition ratios. The various composition ratios resulted in oligomer of vastly different thermal properties. We observed that both OEST and OBST were degraded using lipase PS, but as the composition of terephthalic acid was increased, the lipase PS became less effective. We confirmed that the lipase PS easily decomposed polyester of the aliphatic compound.