• Title/Summary/Keyword: tephrochronology

Search Result 5, Processing Time 0.018 seconds

Tephrochronology: Washing, Separation and Identification of Volcanic Glass Shard (테프라 연대학: 화산유리의 세척, 분리 및 감정)

  • Kil, Young-Woo;Cheong, Chang-Sik;Park, Se-Jin;Park, Myong-Ho
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.9-13
    • /
    • 2006
  • Volcanic glass shard, which shows relatively homogeneous chemical composition in volcanic eruption materials, is used to determine ages of tephra layers and then to correlate tephra layers each other for understanding of evolution of Quaternary geomorphology. For reducing processing errors in age determination and correlation of units, amorphous glass shard should be separated carefully from soil sample through laboratory procedures such as washing, separation, and identification. Introduction of these processes in detail could be reduced errors in tephrochronology by using volcanic glass shard.

  • PDF

Geological Applications and Limitations of Regional Tephra Layers in Terrestrial Deposits in Korea (한국의 육상에서 발견되는 광역테프라층의 지질학적 활용과 한계)

  • Cheong-Bin Kim;Young-Seog Kim;Hyoun Soo Lim
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.680-690
    • /
    • 2022
  • Tephrochronology uses regional tephra for age dating and stratigraphic correlations. Regional tephras are important in Quaternary geology and archaeology because they can be used as stratigraphic time-markers. In this review, identification and dating methods of tephra are summarized. In addition, the characteristics of regional tephras in terrestrial deposits of the Korean Peninsula are elaborated, and geological applications and limitations of the regional tephra layers are also discussed. So far, AT, Ata, and Kb-Ks tephra layers from Kyushu, Japan have been found in Pleistocene paleosol, marine terrace deposits, and lacustrine deposits in Korea. Also, although not officially confirmed, Aso-4 tephra is likely to occur in terrestrial deposits. The regional tephra layers are vital for dating, especially with regard to sediments over 50 ka beyond the range of radiocarbon dating, and for dating of active faults. Furthermore, it can provide important information for preparing countermeasures against volcanic disasters. However, in order to use the tephra layer geologically, it must be confirmed whether it is a primary deposit based on sedimentological study.

Geological and Geochemical Studies on the Late Quaternary Sedimentary Environment of the Southwestern Ulleung Basin, East Sea. (울릉분지 남서부 해역의 제4기 후기 퇴적환경에 대한 지질${\cdot}$지화학적 연구)

  • 김일수;박명호;이영주;류병재;유강민
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • Two piston cores, obtained from the southwestern Ulleung Basin in East Sea, were analyzed to study the geochemical characteristics of the late Quaternary sediments and to detect any changes in sedimentary environment. The results show that the capacity of Total Organic Carbon is remarkably higher (average 1.8%) than that known from general open-sea. According to tephrochronology from known eruption ages, the sedimentation rates are high, ranging from 12.1 to 14.9 cm/kyr. The ratios of nitrogen and TOC (average 6.18-7.42) imply that the organic matter in the study area would be of oceanic origin. The correlation between sedimentation rates and sulfur contents suggests that the study area may be on the whole anoxic and somewhat high in primary productivity. During the Termination 1, inflows of organic matters were high. The sedimentary environments are characterized by rapid rates of sedimentation, and high anoxic values were compatible with accumulation of organic matters.

Historical Changes of Sediment Accumulation in Lake Shirarutoro Due to Land Use Development in the Forest Catchment, Kushiro Mire in Northern Japan

  • Ahn, Young-Sang
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.413-421
    • /
    • 2009
  • Eleven lake sediment core samples were obtained and analyzed to develop a chronology using $^{137}Cs$ (in 1963) and two tephra layers (Ko-c2 in 1694 and Ta-a in 1739). Sedimentation rates estimated for the past ca 300 years in Lake Shirarutoro indicated that catchment development has influenced the shallowing process in the lake by increasing sediment production. The sediment yield under initial land-use development conditions for the first two periods was estimated as 514 tons $yr^{-1}$ from 1694 to 1739 and 542 tons $yr^{-1}$ from 1739~1963. The development of the Shirarutoro catchment intensified in the 1960s with deforestation and agriculture activity leading to an increased sediment yield of 1261 tons $yr^{-1}$ after 1963. The sediment yields after intensified land use development, such as forestry and agricultural development, were about 2 times higher than that under initial development conditions, leading to accelerated lake shallowing over the last ca 50 years. Sedimentation rates differed with location in the lake because of spatial variation in the sediment flux from the contributing rivers and their catchments. The sedimentation rates before 1963 were low in all sites except for one site close to the Shirarutoroetoro River. The sedimentation rate in 1739~1963 was accumulated mostly at the inflow of the Shirarutoroetoro River by sediment production associated with forestry for charcoal production and initial agricultural development. The sedimentation rate after 1963 increased. In particular, the southern zone of the lake near the conjunction with the Kushiro River had a high sedimentation rate, which is attributable to sediment inflow back from the Kushiro River during floods.

Occurrence and Identification of Tephra Layers found in the Ulsan area, Southeastern Korea (한국 동남부 울산 지역에서 발견되는 화산재층의 산상과 동정)

  • Kim, Cheong-Bin;Kim, Young-Seog;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.55-64
    • /
    • 2021
  • Tephrochronology is the study of tephra layers to correlate and date geologic events. As tephra layers can be used as time-markers, they are essential for the dating of Quaternary deposits. In this study, two types of tephra layers were found in the upper and lower parts of marine terrace deposits distributed in the Sanha-dong and Jeongja-dong, Ulsan areas. Based on the morphological features of glass shards, refractive indices, major element compositions, and similarity coefficients, the upper and lower tephras were identified as AT (ca. 25 ka) and Ata (ca. 105-110 ka) tephra, respectively. To the best of our knowledge, this is the first official report of Ata tephra on terrestrial deposits in Korea. These results are expected to aidin the research of the Quaternary paleoclimate, paleoenvironment, and active faults in the southeastern part of Korea.