딥뉴럴네트워크는 머신러닝 분야 중 이미지 인식, 사물 인식 등에 좋은 성능을 보여주고 있다. 그러나 딥뉴럴네트워크는 적대적 샘플(Adversarial example)에 취약점이 있다. 적대적 샘플은 원본 샘플에 최소한의 noise를 넣어서 딥뉴럴네트워크가 잘못 인식하게 하는 샘플이다. 그러나 이러한 적대적 샘플은 원본 샘플간의 최소한의 noise을 주면서 동시에 딥뉴럴네트워크가 잘못 인식하도록 하는 샘플을 생성하는 데 시간이 많이 걸린다는 단점이 있다. 따라서 어떠한 경우에 최소한의 noise가 아니더라도 신속하게 딥뉴럴네트워크가 잘못 인식하도록 하는 공격이 필요할 수 있다. 이 논문에서, 우리는 신속하게 딥뉴럴네트워크를 공격하는 것에 우선순위를 둔 신속한 오인식 샘플 생성 공격을 제안하고자 한다. 이 제안방법은 원본 샘플에 대한 왜곡을 고려하지 않고 딥뉴럴네트워크의 오인식에 중점을 둔 noise를 추가하는 방식이다. 따라서 이 방법은 기존방법과 달리 별도의 원본 샘플에 대한 왜곡을 고려하지 않기 때문에 기존방법보다 생성속도가 빠른 장점이 있다. 실험데이터로는 MNIST와 CIFAR10를 사용하였으며 머신러닝 라이브러리로 Tensorflow를 사용하였다. 실험결과에서, 제안한 오인식 샘플은 기존방법에 비해서 MNIST와 CIFAR10에서 각각 50%, 80% 감소된 반복횟수이면서 100% 공격률을 가진다.
최근 딥러닝 기술이 큰 관심을 받으며 다양한 분야에 적용되고 있다. 특히 다양한 무선통신기술에 딥러닝을 접목하여 기존 통신시스템의 한계를 뛰어넘으려는 시도가 이루어지고 있다. 본 논문에서는 딥러닝 기반 무선통신 시스템 송신전력 조절방안의 성능검증을 수행하였다. 딥러닝 기반 송신전력 조절방안에서는 수학적 최적화 문제를 직접 풀어서 최적의 전력을 결정하는 기존 방식과 달리 심층신경망 구조를 학습시켜서 채널에 따라 최적의 송신전력을 찾는 General solver를 도출하여 이를 이용한다. 특히 시스템의 주파수 효율을 심층신경망 학습의 손실함수로 사용함으로써 라벨없이 학습을 가능케 한다. 본 논문에서는 Tensorflow 기반 성능분석을 통해 딥러닝 기반 송신전력 조절방안과 최적방안의 성능이 일치함을 보였고, 또한 제안 방안이 기존의 방식에 비해서 1/200의 계산복잡도로 송신전력을 찾을 수 있음을 보임으로써 실제 무선통신시스템에서의 적용가능성을 검증하였다.
본 논문에서는 딥러닝을 활용한 흔들림 영상 안정화 알고리즘을 제안하였다. 제안하는 알고리즘은 기존 몇 가지 2D, 2.5D 및 3D 기반 안정화 기술과 다르게 딥러닝을 활용한다. 제안하는 알고리즘은 흔들리는 영상을 CNN 네트워크 구조와 LSTM 네트워크 구조를 통한 특징 추출 및 비교하여 이전 프레임과 현재 프레임 간의 특징점 위치 차이를 통해 특징점의 이동 크기와 방향의 반대로 영상을 변환하는 알고리즘이다. 흔들림 안정화를 위한 알고리즘은 각 프레임의 특징 추출 및 비교를 위해 Tensorflow를 활용하여 CNN 네트워크과 LSTM 구조를 구현하였으며, 영상 흔들림 안정화는 OpenCV open source를 활용해 구현하였다. 실험결과 영상의 흔들림이 상하좌우로 흔들리는 영상과, 급격한 카메라 이동이 없는 영상을 실험에 사용하여, 제안한 알고리즘을 적용한 결과 사용한 상하좌우 흔들림 영상에서는 안정적인 흔들림 안정화 성능을 기대할 수 있었다.
영상의 세부 분류에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 방법 중 영상처리를 이용한 방법과 딥러닝을 이용한 방법을 비교하는 것을 목표로 한다. 본 논문에서 영상처리를 이용한 방법으로 객체 분리를 위해 Grab-cut 알고리즘을 사용하고, 영상 인코딩을 위해 Fisher Vector를 사용한 방법을 제안한다. 다른 방법으로는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 각각의 방법에 대해 37종의 애완동물 이미지, 총 7,390장에 대해 실험하여 그 효과를 검증 및 비교하였다.
본 논문은 음향잡음감쇠기에서 CNN(: Convolutional Neural Network) 계층의 커널 사이즈가 성능에 미치는 영향을 위한 연구하였다 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 잡음감쇠 성능을 개선한다. 100-neuron, 16-filter CNN 필터와 오차 역전파(back propagation) 알고리즘을 이용하여 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 이는 음성신호가 갖는 유성음 구간에서의 준주기적 성질을 이용하는 것이다. 본 연구에서 커널 사이즈에 대한 잡음감쇠기의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 커널 사이즈가 16 정도일 때 평균자승오차(MSE: Mean Square Error) 및 평균절대값오차(MAE: Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 사이즈가 이보다 더 작거나 커지면 MSE 및 MAE 값이 증가하는 것을 볼 수 있다. 이는 음성신호의 경우 커널 사이즈가 16 정도일 때 특성을 가장 잘 포집할 수 있음을 알 수 있다.
자동전력량 측정이 가능한 AMI(: Advanced Metering Infrastructure)의 설치 비율은 전국적으로 43% 미만이고 특히 지역 기준인 경우에는 10.5%로 매우 열악한 상태이다. 따라서 스마트그리드를 위해서는 전력량계의 자동 정보 기록이 필요하므로 이를 위해서 기존 전력계량계를 개선하여 원격검침 및 사용 제어가 가능한 시스템 개발이 필요하다. 본 논문에서는 기존 전력량계를 AMI기능이 가능하게 하려면 IoT 및 AI를 이용하여 스마트 그리드 핵심인 AMI를 위한 기존 전력 계량기의 원격검침 및 제어 기술 개발을 수행하였다. 주요 연구 내용은 SG를 위한 전력계량기 감지 장치로 변환하기 위하여 Tensorflow와 Open-cv를 이용하여 숫자를 인식하였고, SG를 위한 전력계량기 원격검침 기능 테스트를 위해서는 Intel-Edson 하드웨어와 연동하여 장치를 구성하여 성능을 확인하였다.
자동전력량 측정이 가능한 AMI (advanced metering infrastructure)의 설치 비율은 전국적으로 43% 미만이고 특히 지역 기준인 경우에는 10.5%로 매우 열악한 상태이다. 따라서 스마트그리드를 위해서는 전력량계의 자동 정보 기록이 필요하므로 이를 위해서 기존 전력계량계를 개선하여 원격검침 및 사용 제어가 가능한 시스템 개발이 필요하다. 본 논문에서는 기존 전력량계를 AMI기능이 가능하게 하려면 IoT 및 AI를 이용하여 스마트 그리드 핵심인 AMI를 위한 기존 전력 계량기의 원격검침 및 제어 기술 개발을 수행하였다. 주요 연구 내용은 SG를 위한 전력계량기 감지 장치로 변환하기 위하여 Tensorflow와 Open-cv를 이용하여 숫자를 인식하였고, SG를 위한 전력계량기 원격검침 기능 테스트를 위해서는 Intel-Edson 하드웨어와 연동하여 장치를 구성하여 성능을 확인하였다.
본 논문에서는 음향신호의 배경잡음을 감쇠하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 이산 웨이블릿 변환(DWT: Discrete Wavelet Transform) 후 기존의 적응필터를 대신 FNN(: Full-connected Neural Network) 심층학습 알고리즘을 이용하여 잡음감쇠 성능을 개선하였다. 입력신호를 단시간 구간별로 웨이블릿 변환한 다음 1024-1024-512-neuron FNN 딥러닝 모델을 이용하여 잡음이 포함된 단일입력 음성신호로부터 잡음을 제거한다. 이는 시간영역 음성신호를 잡음특성이 잘 표현되도록 시간-주파수영역으로 변환하고 변환 파라미터에 대해 순수 음성신호의 변환 파라미터를 이용한 지도학습을 통하여 잡음환경에서 효과적으로 음성을 예측한다. 본 연구에서 제안한 잡음감쇠시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 적응필터를 사용하는 경우보다 30%, STFT(: Short-Time Fourier Transform) 변환을 사용하는 경우보다는 20%의 평균자승오차(MSE: Mean Square Error) 개선효과를 얻을 수 있었다.
본 논문에서는 음향신호의 배경잡음을 소거하기 위한 시스템에서 최적의 wavelet을 제안한다. 이 시스템은 기존의 단구간 푸리에변환(STFT: Short Time Fourier Transform) 대신 이산 웨이블릿변환(DWT: Discrete Wavelet Transform)을 수행한 후 심층학습과정을 통하여 잡음소거 성능을 개선하였다. DWT는 다해상도 대역통과필터 기능을 하며 각 레벨에서 모 웨이블릿을 시간 이동시키고 크기를 스케일링한 여러 웨이블릿을 이용하여 변환 파라미터를 구한다. 여기서 음성을 분석하는데 가장 적합한 모(mother) 웨이블릿을 선정하기 위해 여러 웨이블릿에 대한 잡음소거 성능을 실험하였다. 본 연구에서 여러 웨이블릿에 대한 잡음소거시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 가장 많이 사용되는 4개의 wavelet에 대해 모의실험을 수행하였다. 실험 결과, Haar 또는 Daubechies 웨이블릿을 사용하는 경우가 가장 우수한 잡음소거 성능을 나타냈으며 타 웨이블릿을 사용하는 경우보다 평균자승오차(MSE: Mean Square Error)가 크게 개선되는 것을 볼 수 있었다.
본 논문에서는 명령어 음성신호의 인식 성능을 개선하기 위한 새로운 합성곱 신경망(CNN: Convolutional Neural Network) 모델을 제안한다. 이 방법은 입력신호의 단구간 푸리에 변환(STFT: Short-Time Fourier Transform) 후 스펙트로그램 이미지를 구하고 CNN 모델을 이용한 지도학습을 통하여 명령어 인식 성능을 개선하였다. 입력신호를 단시간 구간별로 푸리에 변환한 다음 스펙트로그램 이미지를 구하고 CNN 딥러닝 모델을 이용하여 다중 분류 학습을 수행한다. 이는 시간영역 음성신호를 특성이 잘 표현되도록 주파수영역으로 변환하고 변환 파라미터에 대한 스펙트로그램 이미지를 이용하여 딥러닝 훈련을 수행함으로써 명령어를 효과적으로 분류한다. 본 연구에서 제안한 음성인식시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 이용하면 92.5%의 정확도를 얻을 수 있는 것으로 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.