• 제목/요약/키워드: tensor product of graphs

검색결과 6건 처리시간 0.023초

DEGREE OF VERTICES IN VAGUE GRAPHS

  • BORZOOEI, R.A.;RASHMANLOU, HOSSEIN
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.545-557
    • /
    • 2015
  • A vague graph is a generalized structure of a fuzzy graph that gives more precision, flexibility and compatibility to a system when compared with systems that are designed using fuzzy graphs. In this paper, we define two new operation on vague graphs namely normal product and tensor product and study about the degree of a vertex in vague graphs which are obtained from two given vague graphs G1 and G2 using the operations cartesian product, composition, tensor product and normal product. These operations are highly utilized by computer science, geometry, algebra, number theory and operation research. In addition to the existing operations these properties will also be helpful to study large vague graph as a combination of small, vague graphs and to derive its properties from those of the smaller ones.

GENERALIZATION ON PRODUCT DEGREE DISTANCE OF TENSOR PRODUCT OF GRAPHS

  • PATTABIRAMAN, K.
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.341-354
    • /
    • 2016
  • In this paper, the exact formulae for the generalized product degree distance, reciprocal product degree distance and product degree distance of tensor product of a connected graph and the complete multipartite graph with partite sets of sizes m0, m1, ⋯ , mr−1 are obtained.

Graph Equations Involving Tensor Product of Graphs

  • Patil, H.P.;Raja, V.
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.301-307
    • /
    • 2017
  • In this paper, we solve the following four graph equations $L^k(G)=H{\oplus}J$; $M(G)=H{\oplus}J$; ${\bar{L^k(G)}}=H{\oplus}J$ and ${\bar{M(G)}}=H{\oplus}J$, where J is $nK_2$ for $n{\geq}1$. Here, the equality symbol = means the isomorphism between the corresponding graphs. In particular, we shall obtain all pairs of graphs (G, H), which satisfy the above mentioned equations, upto isomorphism.

Double Domination in the Cartesian and Tensor Products of Graphs

  • CUIVILLAS, ARNEL MARINO;CANOY, SERGIO R. JR.
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.279-287
    • /
    • 2015
  • A subset S of V (G), where G is a graph without isolated vertices, is a double dominating set of G if for each $x{{\in}}V(G)$, ${\mid}N_G[x]{\cap}S{\mid}{\geq}2$. This paper, shows that any positive integers a, b and n with $2{\leq}a<b$, $b{\geq}2a$ and $n{\geq}b+2a-2$, can be realized as domination number, double domination number and order, respectively. It also characterize the double dominating sets in the Cartesian and tensor products of two graphs and determine sharp bounds for the double domination numbers of these graphs. In particular, it show that if G and H are any connected non-trivial graphs of orders n and m respectively, then ${\gamma}_{{\times}2}(G{\square}H){\leq}min\{m{\gamma}_2(G),n{\gamma}_2(H)\}$, where ${\gamma}_2$, is the 2-domination parameter.

GRAPHS AND NON-NORMAL OPERATOR(I)

  • Park, Young-Sik
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.147-159
    • /
    • 2000
  • In this paper, we investigate the properties of non-normal(convexoid, hyponormal) adjacency operators for a graph under two operations, tensor product and Cartesian one.

  • PDF

MULTIPLICATIVELY WEIGHTED HARARY INDICES OF GRAPH OPERATIONS

  • Pattabiraman, K.
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.89-100
    • /
    • 2015
  • In this paper, we present exact formulae for the multiplicatively weighted Harary indices of join, tensor product and strong product of graphs in terms of other graph invariants including the Harary index, Zagreb indices and Zagreb coindices. Finally, We apply our result to compute the multiplicatively weighted Harary indices of fan graph, wheel graph and closed fence graph.