• Title/Summary/Keyword: tension side

Search Result 288, Processing Time 0.024 seconds

On the Implementation of an Advanced Judgement Algorithm for Contact Loss of Catenary System (전차선의 집전상태 판단 알고리즘 구현)

  • Park, Young;Jung, Ho-Sung;Yun, Il-Kwon;Kim, Wonha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.850-854
    • /
    • 2014
  • Analyzing dynamic performance between pantograph and contact wire depends on mechanical and electrical conditions such as contact force, currents, aerodynamics of pantograph and tension of overhead contact wire. For the characteristic of dynamic performance between pantograph and overhead contact wire, various evaluation systems are used to measuring of the interaction of the contact line and the pantograph. Among the various methods, the contact force and percentage of arcing are intended to prove the safety and the quality of the current collection system on the train. However, these methods are only capable of measuring on the train which are installed measurement systems. Therefore in this paper, a track-side monitoring system was implemented to measure electrical characteristics from active overhead contact wire systems in order to constantly estimate current collection performance of railway operation. In addition, a method to analyze loss of contact phenomena was proposed. According to simulation results, the proposed system was capable of measuring abnormal electrical behavior of pantograph and contact wires on the track-side. The advantage of the proposed system is possible to detect loss of contact or any other electrical abnormalities of all types of trains within sections from sub to sub without the need to install any on-board equipment on trains.

Experimental Study of Anchor Zone of Externally Prestressed Segmental Bridge (현장 실험을 통한 상판분절 P.C 교량의 정착부 응력 분석)

  • 이성우;배두병;지기환;정남석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.87-94
    • /
    • 1994
  • During the construction of externally prestressed 7-span continuous segmental bridge, cracks beyond permissible limit were found at anchor zone of expansion joint segment. To eliminate this problem, tension side of diaphragm was prestressed by post-tensioning bars in vertical and horizontal direction. To investigate this remedy is acceptable, stresses of reinforcing bars and concrete surface were measured for the real structure in the field. The measurement was performed through each step of prestressing sequence during construction. Also to investigage stresses induced by live load, static load test was performed and the results was analyzed. In this paper it will be presented the procedure and results for this experimental study along with comparison with analytical study.

  • PDF

Shear behavior of RC beams externally strengthened and anchored with CFRP composites

  • Al-Rousan, Rajai Z.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.447-456
    • /
    • 2017
  • The primary objective of this paper is to study the effectiveness of anchorage on the performance of shear deficient beams externally strengthened with CFRP composites. The overall behavior of the tested beams loaded up to failure, the onset of the cracking, and crack development with increased load and ductility were described. The use of CFRP composites is an effective technique to enhance the shear capacity of RC beams by using CFRP strips anchored into the tension side and from the top by 15-34% based on the investigated variables. Bonded anchorage of CFRP strips with width of 0.1h-0.3h to the beam resulted in a decrease in average interface bond stress and an increase in the effective strain of the FRP sheet at failure, which resulted in a higher shear capacity as compared with that of the U-wrapped beams without anchorage as well as delay or mitigate the sheet debonding from the concrete surface.

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.

A Study on the development of treadmill for the exercise of rat (래트(Rat)의 운동을 위한 트레이드밀의 개발에 관한 연구)

  • Kim, Ju-Myung;Choi, Eun-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.76-81
    • /
    • 2001
  • This paper place the focus the development of treadmill for rat in order to verify the effectiveness of exercise therapy. Up to now, in many medical laboratories treadmill have had to be remodeled for experiments with animal. Thus, it is necessary to develop the treadmills for animals only including rats. The treadmill has a DC motor which can make 600 revolutions per minute(600 RPM) and tension of the belt of the treadmill can be adjusted to prevent shift of the belt to any side. Velocity can be selected from 10m to 30m per minute increasing by 1m. The motor is controled by pulse width modulation(PWM) control mode using a 8bit microprocessor. In the future, the roller and motor need to be combined for improvement of stability and decrease of noise.

  • PDF

A Case of Myoclonus Presenting as a Side Effect of Amitriptyline (삼환계 항우울제의 부작용으로 나타난 간대성 근경련증 1례)

  • Choi, Jong-Pil;Park, Seong-Soo;Park, Joon-Seok;Na, Sang-Jun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.4 no.2
    • /
    • pp.155-157
    • /
    • 2006
  • Myoclonus is manifested in a variety of situations including metabolic derangements, brain lesions, epilepsy, and drugs toxicity. We reported a rare case of amitriptyline-induced myoclonus. A 64-year-old man with a tension-type headache was administered amitriptyline at 15 mg/day. Eight days after initiation of amitriptyline, multifocal myoclonus developed, involving the face and upper extremities. Two hours after the administration of clonazepam at 1 mg, myoclonus resolved completely.

  • PDF

The Effect of Interface Activation Substances in Reduction Phenomena of Streaming Electrification for Transformer Oil (변압기유의 유동대전 감소현상에 미치는 계면활성제의 효과)

  • Kim, Yong-Woon;Lee, Duck-Chool;Watanabe, Shigeo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.48-51
    • /
    • 2000
  • The purpose of this study is to find the way to reduce the electrostatics by interface activation substances added in the insulating oil with concentration[ppm]. As results, The streaming current, surface tension and viscosity of the samples added nonionic and hermaphrodic substances are decreased but the conductivity is increased at higher point than the 1[ppm](c.m.c.), the other side the same phenomena of the samples added cationic and anionic substances are discovered at the 10[ppm].

  • PDF

A Milimeter-Sized Master-Slave Robot Driven by Condult-Guided Wires - (part 1.Force and positon control of a joint)

  • Kuribayashi, Katsutoshi;Park, Chang-Young;Miyazaki, Satoshi;Ono, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.985-989
    • /
    • 1990
  • This paper presents a fundamental study of a millimeter-sized master-slave robot driven by conduit-guided wires, which is expected to be applied to the delicate surgical operations, the assembling precise and small parts and so on. This system consists of a millimeter-sized slave robot and a master manipulator of which the size is adapted to a human finger. Displacement and torque of the master side can be reduced and transferred to the slave robot by controlling the motor torque against the master torque by feeding back tension signals. The master can feel the tensions by the motor torque. In this paper, the design method and making process of the master-slave system and the dynamical characteristic of displacement and torque control are proposed.

  • PDF

An Experimental Study on the Structural Behavior of Strengthened Reinforced Concrete Columns (보강된 철근콘크리트 기둥의 구조거동에 관한 실험적 연구)

  • 이승엽;정성원;황규표;장성재;음성우;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.665-672
    • /
    • 1997
  • In this paper, sixteen column specimens were tested under the concentrated and excentric load condition to examine the structural behavior of strengthened columns. 16 column specimens were divided into four groups. One group is not strengthened, the other three groups are strengthened by the materials : 1) steel plate, 2) carbon fiber sheet, and 3) glass fiber sheet, each group is composed of four specimens. As a result, strengthened columns have larger bearing capacity and energy absorption after ultimate load than unstrengthened columns. The column group strengthened with steel plate has the best bearing capacity among the strengthened column groups. Also, the columns strengthened with the carbon fiber sheet are similar to glass fiber sheet in bearing capacity. If necessary to strengthen columns in trouble, car should be taken to treat the joint between beam and column because of crack propagation in tension side.

  • PDF

Finite Element Analysis for the Prediction of Durability of Idler Wheel of Tracked Vehicle (궤도차량용 휠의 내구성 예측을 위한 유한요소 해석 기법 연구)

  • Lee, Kyoung-Ho;Roh, Keun-Lae;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.676-682
    • /
    • 2009
  • The idler wheel installed at the front side of the newly developed tracked vehicle didn't meet the durability requirement by showing the crack failure near the jointed region at the wheel during the field test. To find the crack developing mechanism we constructed finite element model for the idler wheel representing the behavior of interface between each suspension units, material properties from the material test data and actual loading conditions. This paper shows a result that maximum von Mises stress near the bolt hole on the outer rim is higher than inner idler coressponding to the actual test result and that result was reversed by adopting the reinforcement outside of the outer rim.