• Title/Summary/Keyword: tension reinforcement

Search Result 334, Processing Time 0.029 seconds

An Experimental Study on the Strengthening Effect of RC Beams Strengthened by CFRP (탄소섬유 보강재로 보강한 RC 보의 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.71-77
    • /
    • 2005
  • Bonded CFRP Plate method used murk in reinforcement method is very efficient for stress increment of reinforced members. But CFRP plate dosen't display enough its capacity and have the destruction characteristic of premature failure that reach failure by debond plate, because near-surface-bond using epoxy. Such destruction character of reinforced specimens take the influence at variables as steel reinforcement ratio, concrete strength, kind of reinforcement materials, reinforced length, property of epoxy used in binder and so on. In this study, performed experiment results are compared and considered on flexural performance of Near Surface Mounted Reinforcement used CFRP-Rod, as complement about structural behavior of RC beam reinforced flexural capacity in CFRP plate and premature failure of reinforcement material. Main variables of RC beam applied CFRP Plate external bond method are experimental variables as reinforcement length, reinforcement position (tension face and side face of beam) and existence of ironware in end parts. In case of CFRP-Rod, variable is reinforcement length.

  • PDF

Tension Stiffening Effect of High-Strength Concrete in Axially Loaded Members

  • Kim, Woo;Lee, Ki-Yeol;Yum, Hwan-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.915-923
    • /
    • 2003
  • This paper presents the test results of total 35 direct tensile specimens to investigate the effect of high-strength concrete on the tension stiffening effect in axially loaded reinforced concrete tensile members. Three kinds of concrete strength 25, 60, and 80 MPa were included as a major experimental parameter together with six concrete cover thickness ratios. The results showed that as higher strength concrete was employed, not only more extensive split cracking along the reinforcement was formed, but also the transverse crack space became smaller. Thereby, the effective tensile stiffness of the high-strength concrete specimens at the stabilized cracking stage was much smaller than those of normal-strength concrete specimens. This observation is contrary to the current design provisions, and the significance in reduction of tension stiffening effect by employment of high-strength concrete is much higher than that would be expected. Based on the present results, a modification factor is proposed for accounting the effect of the cover thickness and the concrete strength.

A Study on the Bond Behavior of Reinforced Concrete Beam (철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究))

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF

CONTAINMENT PERFORMANCE EVALUATION OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, HYUNG-KUI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.884-894
    • /
    • 2015
  • Background: Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. Methods: The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. Results: For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. Conclusion: The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcementwas shown to bemore effective at a high pressure loading and a lowprestress level.

Performance evaluation of differently structured RCE-DR GdBCO coated conductor tapes under uniaxial tension at 77 K

  • Diaz, Mark Angelo E.;Shin, Hyung-Seop;Jung, Ho-Sang;Lee, Jaehun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.13-17
    • /
    • 2022
  • The mechanical properties of REBCO coated conductor (CC) tapes under uniaxial tension are mainly determined by the thick layer Components like the substrate and the stabilizer. Depending on the applications of the CC tapes, it is also needed to externally reinforce thin metallic foils to one side or both sides of the CC tapes. This study investigated the effect of additional stabilizer layers or lamination on the electrical resistivity and electromechanical properties in RCE-DR processed GdBCO CC tapes with different structures. The strain/stress tolerance of Ic in differently processed 12 mm-wide REBCO CC tapes under uniaxial tension at 77 K and self-field could be determined by the loading-unloading scheme. As a result, Sn-Cu stabilized CC tape showed a significant decrease in mechanical properties due to its soft but thick stabilizing layer. However, similar electromechanical properties have been observed on both Sn-Cu and Sn-stabilized CC tapes, the Ic degradation behavior was independent of whether the CC tape has an external reinforcement or different stabilizing layers.

Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

  • Bautista, Zhierwinjay;Shin, Hyung-Seop;Mean, Byoung Jean;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.21-24
    • /
    • 2016
  • The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current ($I_c$) was measured at 77 K and self-field. Depending on whether the $I_c$ of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of $I_c$, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Design and ultimate behavior of RC plates and shells: two case studies

  • Min, Chang-Shik
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.171-190
    • /
    • 2002
  • Two cases of design are performed for the hyperbolic paraboloid saddle shell (Lin-Scordelis saddle shell) and the hyperbolic cooling tower (Grand Gulf cooling tower) to check the design strength against a consistent design load, therefore to verify the adequacy of the design algorithm. An iterative numerical computational algorithm is developed for combined membrane and flexural forces, which is based on equilibrium consideration for the limit state of reinforcement and cracked concrete. The design algorithm is implemented in a finite element analysis computer program developed by Mahmoud and Gupta. The amount of reinforcement is then determined at the center of each element by an elastic finite element analysis with the design ultimate load. Based on ultimate nonlinear analyses performed with designed saddle shell, the analytically calculated ultimate load exceeded the design ultimate load from 7% to 34% for analyses with various magnitude of tension stiffening. For the cooling tower problem the calculated ultimate load exceeded the design ultimate load from 26% to 63% with similar types of analyses. Since the effective tension stiffening would vary over the life of the shells due to environmental factors, a degree of uncertainty seems inevitable in calculating the actual failure load by means of numerical analysis. Even though the ultimate loads are strongly dependent on the tensile properties of concrete, the calculated ultimate loads are higher than the design ultimate loads for both design cases. For the cases designed, the design algorithm gives a lower bound on the design ultimate load with respect to the lower bound theorem. This shows the adequacy of the design algorithm developed, at least for the shells studied. The presented design algorithm for the combined membrane and flexural forces can be evolved as a general design method for reinforced concrete plates and shells through further studies involving the performance of multiple designs and the analyses of differing shell configurations.

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Low Cycle Fatigue Behavior of Longitudinal Reinforcement (축방향철근의 저주파 피로 거동)

  • Lee, Jae-Hoon;Ko, Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • The purposes of this study is to verify the fracture characteristic of steel which is manufactured in Korea, subjected to cyclic loading. This investigation deals with the low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge substructure (piles and columns of piers). Eighty-one specimens of longitudinal reinforcement were tested under axial strain controlled reversed cyclic tests with strain amplitudes. The selected test variables are ratio of tension strain to compression strain, yield stress of longitudinal reinforcement, ratio of diameter of longitudinal steel to clear length of longitudinal steel, size of longitudinal steel and strain amplitudes. Low cycle fatigue behavior and low-cycle fatigue life are investigated and discussed in this paper.