• Title/Summary/Keyword: tensile strain rate

Search Result 387, Processing Time 0.029 seconds

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF

Evaluation of Notch Effect on the Dynamic Strain Aging Behavior of Carbon Steel Piping Material (탄소강 배관 재료의 DSA 거동에 미치는 노치 영향 평가)

  • Lee, Sa-Yong;Kim, Jin-Weon;Kim, Hong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.275-282
    • /
    • 2012
  • In this study, tensile tests were performed using standard and notched-bar specimens under two different displacement rates and various temperatures, in order to investigate the effects of the stress and strain concentration at the notched section on the dynamic strain aging (DSA) behavior of carbon steel piping material. In addition, finite element simulations were conducted to evaluate quantitatively the stress and strain states for both types of specimen under uniaxial tensile loading. The results showed that serration and an increase in tensile strength, which are considered to be evidence of DSA in carbon steels, can be observed from tensile tests for notched-bar specimens. It was also found that the temperature region of DSA observed in the notched-bar specimens was higher than the DSA region observed in the standard tensile specimens tested under the same displacement rate. The results of finite element analysis showed that this behavior is associated with the high strain rate at the notched section, which is caused by the stress and strain concentration.

Charactetristical Analysis of the Microstructure and the Stress-Strain Curves for the Evaluation of 7xxx Series Aluminum Extrudates (7xxx계급 알루미늄 열간 압출재의 평가를 위한 미세조직과 응력-변형률 곡선의 분석)

  • Lee, S.Y.;Woo, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.307-314
    • /
    • 2018
  • Simple tensile tests and microstructural investigations have been performed on extrudates of high strength aluminum alloys such as 7075, 7021 and 7xxx(Sc) to understand correlation between extruding conditions and extruded properties. Tensile specimens which were taken from different locations at the same cross section of an extrudate were tested at room temperature and with a strain rate of $8.9{\times}10^{-5}/s$. The microstructures according to the locations at the cross section have been observed using optical microscopy and electron back-scattered diffraction (EBSD) mapping to characterize the effect on stress-strain curve. The results could be classified in three types independent of alloying contents and extusion methods. The fine differences in the stress-strain curves were resulted from inhomogenity in the microstructures according to locations of an extrudate which were performed through instantaneous extruding conditions such as temperature, strain rate and strain.

Mechanical Properties of Hot-forged Al 6061-T6 (Al 6061-T6 단조 성형품의 기계적 특성)

  • Park, C.;Kim, S.S.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.374-380
    • /
    • 2003
  • The effect of forging parameters, including different forging stock, strain rate and strain, on the mechanical properties of hot-forged Al 6061-T6 was investigated. The forging was conducted using either hydraulic press, crank press or hammer press, respectively, at a forging temperature of $400^{\circ}C$. When using an extruded bar as a forging stock, the tensile strength was lower for the specimens prepared by hammer forging than those by crank press forging. It was found that the coarsening of recrystallized grain was responsible for the decrease in tensile strength with hammer forging. Systematic studies on the effects of strain and strain rate on the tensile properties of hot-forged Al 6061-T6 products using extruded bar as a forging stock further suggested that the coarsening of recrystallized grains and$ Mg_2$Si precipitates complexed the observed trends in the tensile behavior. In case of hot forging with continuous cast bar as a forging stock, on the other hand, the mechanical properties of the specimen were largely improved with hammer press compared to those with crank press, which appeared to be due to the homogenization of microstructure.

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF

Experimental and Analytical Evaluation of Forming Characteristics for AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금판재의 성형특성 평가를 위한 실험적·해석적 연구)

  • Lee, M.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • This study aimed at providing an experimental database for the mechanical properties of AZ31B magnesium alloy sheet such as stress-strain curve, yield stress, R-value and forming limit diagram(FLD) at various strain-rates and temperatures. Tensile tests were carried out on specimens having the orientations of $0^{\circ}$, $45^{\circ}$ and $90^{\circ}$ to the rolling direction with different crosshead speeds in the range between 0.008 and 8 mm/s at temperature from 25(room temperature) to $300^{\circ}C$. The influence of the specimen gage length on the tensile properties was investigated. FLD tests were performed at punch speed of 0.1 and 1.0 mm/s in the same temperature range as that of the tensile tests. Swift cup tests were conducted to verify the usefulness of the material database and the reliability of the finite element analysis(FEA). The effects of strain-rate as well as temperature were taken into account in these simulations. It was shown that the FLD-based failure was reasonably well predicted by the thermal-deformation coupled analysis for this rate-sensitive material.

Influence of Rheological Properties of Adhesive Polymer on Strain Energy Release Rate of Mode I and Adhesive Tensile Strength (모드I의 변형 에너지 해방율과 인장 접착강도에 미치는 접착제 고분자의 유변특성의 영향)

  • H. Mizumachi
    • The Korean Journal of Rheology
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 1996
  • 접착강도는 접착제의 점탄성을 반영한 온도·속도 의존성을 나타낸다는 것이 잘 알 려져있다. 특히 유리전이온도(Tg)에서의 역학적 완화기구가 접착층의 변형을 수반하는 접착 층의 변형을 수반하는 접착강도에 크게 영향을 미치고 있다. 또한 접착계의 모드I의 변형에 너지 해방율(GIC)를 측정할때에도 접착제의 변형과 파괴가 발생하기 접착제의 점탄성이 그 값에 어떠한 영향을 미치는 지에 흥미가 깊다. 본 연구에서는 2종류의 에폭시 수지를 블랜 드한 접착제를 이용하여 일정한 측정조건에서 인장 접착강도와 GIC의 상관관계에 대하여서 도 토론하였다.

  • PDF

High strain rate tensile test of sheet metals with a new tension split hopkinson bar (새로운 Tension Split Hopkinson Bar를 이용한 박판의 고속 인장시험)

  • Kang, Woo-Jong;Cho, Sang-Soon;Huh, Hoon;Jung, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2209-2219
    • /
    • 1997
  • A split hopkinson bar could be used for obtaining the high strain rate material properties of sheet metals for an autobody. In high speed tensile tests of sheet matals, a new design of a tension split Hopkinson bar apparatus is needed. The design of grips and an anvil length are numerically analyzed with ABAQUS/Explicit for the new apparatus of split Hopkinson bars. From the experiments with the new apparatus, the material properties of SPCEN in the high strain rate state have been acquired and compared with quasi-static experimental results. The material properties of SPCEN as well as other sheet metals in an autobody are indispensible for the analysis of crashworthness. Nevertheless the experiment of sheet metal in the high strain rate state has not been done or reported.

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium

  • Sahi, Qurat-ul-ain;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.907-914
    • /
    • 2018
  • In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.

Evaluation on Cement Composites of Dynamic Tensile Fracture Properties by Fiber Type (섬유 종류에 따른 시멘트복합체의 동적 인장파괴특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Cheo, Gyeong-Cheol;Kim, Hong-Seop;Kim, Jung-Hyun;Lee, Sang-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.118-119
    • /
    • 2015
  • Fracture behavior of concrete subjected to dynamic loading is affected by loading rate and strain rate. In this study, compressive strength properties according to strain rate of fiber reinforced cement composites by rapid loading with 500Ton rapid loading test machine was analyzed.

  • PDF