• 제목/요약/키워드: tensile strain rate

검색결과 378건 처리시간 0.031초

Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub;Kim, Guan-Hee;Kim, Myun-Soo;Hwang, Jai-Sug
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.787-795
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

SHPB 테크닉을 이용한 Al5052-H32의 동적 인장 거동 규명 (Determination of Dynamic Tensile Behavior of Al5052-H32 using SHPB Technique)

  • 이억섭;김면수;백준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.790-794
    • /
    • 1997
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to those mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental behavior under high strain rate loading condition In this paper, dynamic deformation behaviors of A15052-H32 under high strain rate tensile loading are determined using the SHPB technique.

  • PDF

상용 알루미늄 합금의 고속 인장/압축 변형거동 규명 (Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading)

  • 이억섭;김관희;김면수;황시원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

폴리프로필렌의 변형속도 및 온도변화에 따른 판재 인장시험 평가 (Tensile Test Evaluation of Polypropylene Sheets Following as Strain Rate and Temperature Variation)

  • 김기주
    • 한국산학기술학회논문지
    • /
    • 제19권8호
    • /
    • pp.32-36
    • /
    • 2018
  • 500kgf 용량의 Instron 시험기를 이용하여 폴리프로필렌 판재의 인장시험 평가를 행하였다. 두께가 0.8 mm인 폴리프로필렌 판재의 변형속도민감도를 평가하기 위하여 변형속도는 $5{\times}10^{-4}/sec{\sim}5{\times}10^{-2}/sec$으로 100배 변화를 주어 상온 및 고온인장시험 하였다. 이를 통하여 변형속도 및 온도 변화에 따른 강도변화를 비교하였다. 실험결과 초기 변형속도가 증가할수록 강도가 증가하였으며 이는 폴리프로필렌은 변형속도민감도가 강한 양의 값을 지닌 재료임을 알 수 있었다. 또한 폴리프로필렌 판재의 고온 인장특성을 평가하기 위하여 온도는 80, 120, $160^{\circ}C$로 변화시켜 시험하였다. 고온인장시험 결과 온도가 증가할수록 강도는 감소하였으며 특히 $160^{\circ}C$에서는 강도가 인장강도가 0으로 강하하였다. 변형속도 증가에 따른 온도 증가의 영향을 살펴보면 상온, $80^{\circ}C$$120^{\circ}C$까지는 항복강도 및 인장강도의 증가 폭이 비슷한 수준을 나타내었으나 $160^{\circ}C$에서는 응력이 0에 가까워짐에 따라 강도 증가가 거의 없는 것으로 나타났다. 고온 인장시험에서 변형속도 증가에 따라 항복강도 값이 증가하는 양 보다는 인장강도 값이 증가하는 폭이 컸다.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 - (Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가 (Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect)

  • 송준혁;나석찬;유효선;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.

재하속도에 따른 고성능 섬유보강 시멘트 복합체의 역학적 특성 (Effect of Strain Rate on the Mechanical Properties of High Performance Fiber-Reinforced Cementitious Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;김선우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.29-32
    • /
    • 2004
  • An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of high performance fiber-reinforced cementitious composites(HPFRCC) were selected using the cylindrical specimens. Uniaxial compressive and tensile tests have also been carried out at varying strain rates to better understand the behavior of. HPFRCC and propose the standard loading rate for compressive and tensile tests of new HPFRCC materials. The results show that there is a substantial increase in the ultimate compressive and tensile strength with increasing strain rate.

  • PDF

중변형률 속도에서의 차체용 강판의 동적 인장실험 (Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate)

  • 임지호;허훈;권순용;윤치상;박성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • 비파괴검사학회지
    • /
    • 제29권3호
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.

SPRC440 강판재의 미세조직 구성이 동적 인장 특성에 미치는 영향 (Effect of Microstructure on Dynamic Tensile Characteristics of SPRC440 Sheet)

  • 이성희;임영목;이정환;김인배;김양도
    • 소성∙가공
    • /
    • 제20권4호
    • /
    • pp.309-315
    • /
    • 2011
  • The behavior of metallic materials at high strain rates shows different characteristics from those in quasi-static deformation. Therefore, the strain rate should be considered when simulating crash events. The objective of this paper is to evaluate the dynamic tensile characteristics of SPRC440 as a function of the volume fraction of phases. As-received SPRC440 is composed of ferrite and pearlite phases. However, ferrite and martensite phases were observed after heat treatment at $730^{\circ}C$ and $780^{\circ}C$ for 5 minutes, as expected by calculations based on the curves from dilatometry tests. High cross-head speed tensile tests were performed to acquire strain-stress curves at various strain rates ranging from 0.001 to $300\;s^{-1}$, which are typical in real vehicle crashes. It was observed that the flow stress increases with the strain rate and this trend was more pronounced in the as-received specimens consisting of ferrite and pearlite phases. It is speculated that the dislocation density in each phase has an influence on the strain rate sensitivity.