Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub (School of Mechanical Engineering, Inha University) ;
  • Kim, Guan-Hee (School of Mechanical Engineering, Inha University) ;
  • Kim, Myun-Soo (School of Mechanical Engineering, Inha University) ;
  • Hwang, Jai-Sug (School of Mechanical Engineering, Yeungnam University)
  • Published : 2003.06.01

Abstract

Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

Keywords

References

  1. Bragow, A. M. and Lomunow, 1994. 'Methodological Aspects of Studying Dynamics Material Properties Using the Kolsky Method,' Int. J. Impact Energy, Vol. 16, pp. 321-330 https://doi.org/10.1016/0734-743X(95)93939-G
  2. Chree, C., 1889, 'The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates,' Their Solutions and Applications Cambridge Phil. Soc. Trans. Vol 14, p. 250
  3. Davies, R. M., 1948, 'An Critical Study of the Hopkinson Pressure Bar,' Phil. Tran. A, Vol. 240, p. 375 https://doi.org/10.1098/rsta.1948.0001
  4. Follansbee, P. S., 1985, ' in Metals Handbook Ninth Edition, Mechanical Testing,' American Society for Metals, Vol. 8, pp. 198-203
  5. Hopkinson, B., 1941, 'A Method of Measuring the Pressure Produced in the Detonation of Explosives or by the Impact of Bullets,' Phil. Trans. A, Vol. 213, p. 437
  6. Huh, H., Kang, W. J. and Han, S. S., 2002, 'A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals,' SEM International Journal, Vol. 42, No. 1, pp. 8-17 https://doi.org/10.1007/BF02411046
  7. Kang, W. J., Cho, S. S., Huh, H., and Chung, D. T., 1997, 'High Strain-rate Tensile Test of Sheet Metals with a New Tension Split Hopkinson Bar,' Trans. KSME, Vol. 21, No. 12, pp. 2209-2219
  8. Lee, O. S., Lee, S. S., Chung, J. H. and Kang, H. S., 1998, 'Dynamic Deformation Under Bar Experiment,' KSME International Journal, Vol. 12, No. 6, pp. 1143-1149
  9. Lee, O. S., Lee, J. Y., Kim, G. H. and Hwang, H. S., 2000, 'High Strain-rate Deformation of Composite Materials Using a Split Hopkinson Bar Technique, Key Engineering Materials,' 183-187, Part 1, pp. 307-312 https://doi.org/10.4028/www.scientific.net/KEM.183-187.307
  10. Lee, O. S. and Kim, G. H., 2000, 'Thickness Effects on Mechanical Behavior of a Composite Material (1001P) and Polycarbonate in Split Hopkinson Pressure Bar Technique,' Journal of Materials Science Letters, Vol. 19, pp. 1805-1808 https://doi.org/10.1023/A:1006786122575
  11. Lee, O. S. and Kim, G. H., 2000, 'Determination of Deformation Behavior of the A16061-T6 under High Strain Rate Tensile Loading Using SHPB Technique,' Transaction of KSME (A), Vol. 24, No. 12, pp. 3033-3039 (in Korean)
  12. Nicholas, Theodore, 1981, 'Tensile Testing of Materials at High Rates of Strain,' Experimental Mechanics, Vol. 21, pp. 177-185 https://doi.org/10.1007/BF02326644
  13. Pochhammer, L., 1876, 'On the Propagation Velocities of Small Oscillations in an Unlimited Isotropic Circular Cylinder,' J. Reine Angewandte Math, Vol. 81, p. 324
  14. Zukas, J. A., 1990, 'High Velocity Impact Dynamics,' John Wiley & Sons, Inc.