• 제목/요약/키워드: tensile modulus

검색결과 1,208건 처리시간 0.028초

귀금속(금, 은)-유리계의 젖음성과 부착성 (Wettability and Adhesion of Noble Metal (Au, Ag)-Glass Systems)

  • 김종희
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.405-412
    • /
    • 1995
  • In order to estimate the wettability of the borosilicate glasses with different composition on the noble metals of gold and silver, the measurements of the contact angle between the solid and the liquid were made at various temperatures and holding times using the sessil-drop method. The wetting behavior and the adhesion of the phases were strongly influenced by the thermal or the physical characteristics of the materials. The dependence of wetting angle ($\theta$) on the holding time (t) could be represented by the relation of $\theta$=a.tb, whereby the wettability of the systems was quantitatively compared. Also with increasing content of borosilicate glass in the glass-gold matrix composite, the tensile strength was decreased whereas the elastic modulus was increased.

  • PDF

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

AL 2024-T3의 단시간 고온 강도 특성 (Strength Characteristics of An Aluminum 2024-T3 in Short-time High Temperature Environment)

  • 이열화;김재영;김헌주;박경민;김종환
    • 한국군사과학기술학회지
    • /
    • 제4권1호
    • /
    • pp.255-263
    • /
    • 2001
  • The main purpose of this paper is to investigate strength characteristics of Aluminum 2024-T3 in high temperature environment. Tensile test of Aluminum 2024-T3 has been carried out in high temperature environment. The stress-strain relations are investigated with temperature and Young's modulus, yield strength and ultimate strength are deduced from the test results. The modulus and strength of the test are compared with those of MIL HANDBOOK and tips on structural design in high temperature environment are suggested.

  • PDF

양생온도변화에 따른 콘크리트의 재료역학적 특성 (Mechanical Properties of Concrete with Different Curing Temperatures)

  • 김진근;한상훈;양은익;송영철;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.42-47
    • /
    • 1998
  • Experimental investigation was undertaken to determine early-age strength development and the relationships between the mechanical properties of type I, V and V/fly ash cement concrete with different curing temperature. The tests for mechanical properties, i.e., compressive strength, splitting tensile strength and modulus of elasticity were carried out for type, I, V and V with 15% replacement with fly ash cement concrete. For this purpose 480 concrete cylinders cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$ were tested at ages of 1, 3, 7 and 28days. According to the experiments, the concrete subjected to high temperature at early age got greater strength at early age, however eventually lower strength at late age. The derived relationships between compressive strength and splitting tensile strength and elastic modulus of elasticity appeared to be identical for all types of cement.

  • PDF

폐플라스틱과 고탄소 플라이애쉬 경량골재를 이용한 경량 콘크리트의 역학적 특성 (The Mechanical Properties of Lightweight Concrete Using the Lightweight Aggregate Made with Recycled-plastic and high carbon fly ash)

  • 조병완;박승국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.640-643
    • /
    • 2004
  • Synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5mm were produced with fly ash contents of 0 percent, 35 percent, and 80 percent by total mass of the aggregate. An expanded day lightweight aggregate and a normal-weight aggregate were used as comparison. Mechanical properties of the concrete determined included density, compressive strength, elastic modulus, and splitting tensile strength. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As fly ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved.

  • PDF

간편배합설계 방법을 이용한 고강도경량 자기충전콘크리트의 역학적 특성 (Mechanical properties of high strength lightweight self-compacting concrete using simple mixed design)

  • 최연왕;신화철;김용직;최욱;조선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.204-207
    • /
    • 2004
  • In this paper, mechanical properties of the high strength lightweight self-compacting concrete with simple mixed design method was investigated. Experimental tests were performed as such compressive strength, splitting tensile strength, modulus of elasticity and density of high strength lightweight self-compacting concrete. The 28 days compressive strength of high strength lightweight self-compacting concrete with the LC replacement ratio of $100\%$ reduces about $31\%$ but LF replacement ratio of $100\%$ increase about $20\%$ compared that of the control concrete. The structural efficiency of high strength lightweight self-compacting concrete increase with proportional to the replacement into of LF. The relationship between the splitting tensile strength and 28 days compressive strength can be represented by the equation $f_s=0.076f_{ck}+0.5582$. The modulus of elasticity was found to be lower than that of normal weight concrete, ranging form 24 to 33 GPa.

  • PDF

철도차량용 유리섬유직물/페놀릭 복합재의 가속노화 특성 (Aging Characteristics of Glass Fabric/Phenolic Composites in Train Carbody)

  • 윤성호;남정표;황영은;신광복
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.352-357
    • /
    • 2004
  • In this study. the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated through a 2.5KW accelerated environmental aging tester. Environmental factors such as temperature. moisture, and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile, bending, and shear specimens those are warp direction and fill direction were used to investigate the effects of environmental factors on mechanical properties of the composites. The glass fabric $\sharp$650/AP300 was used for the fabrication of specimens. Mechanical degradations for tensile, bending and shear properties were evaluated through a UTM. Also. storage shear modulus. loss shear modulus, and tan $\delta$ were measured as a function of exposure times through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using II scanning electron microscope.

  • PDF

Manufacturing and Mechanical Properties of Sisal Fiber Reinforced Hybrid Composites

  • Hui, Zhi-Peng;Sudhakara, P.;Wang, Yi-Qi;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • 제26권5호
    • /
    • pp.273-278
    • /
    • 2013
  • PLA/PP polymer blends in various ratios (PLA:PP = 9:1, 4:1, 3:1, and 1:1), and their composites (PLA:PP = 1:1) with sisal fiber (10, 15 and 20 wt%) were fabricated using MAPP as compatibilizer. The aim of the work was to reduce the cost of biodegradable composites as well as to improve the impact strength of PLA using PP, a relatively cheaper thermoplastic. The developed composites were characterized for their morphological and mechanical properties. The tensile strength and modulus of the blends were decreased with increasing PP content whereas the strain at break and impact strength are increased. The tensile strength, modulus and water absorption were increased for hybrid composites with increasing fiber content.

Relationship between Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • 제5권3호
    • /
    • pp.177-181
    • /
    • 2004
  • Current efforts to establish links between geometrical features and mechanical performance of nonwoven fabrics in general, and of point-bonded (spot-bonded) nonwovens in particular has been made using the measurements of Fiber Orientation Distribution Function (ODF) and tensile modulus which occurs during controlled-deformation experiments. Image analysis technique (using the Fast Fourier Transform) was used to quantify the fiber orientation distribution. The results suggest that, within a typical window of processing conditions, the fiber orientation has a significant influence on the anisotropical behavior of nonwoven. The data also suggest that mechanical anisotropy of thermally point-bonded nonwovens is likely to be governed by different load transfer mechanism according to the applied macroscopic tensile direction.

상동광산 광미를 활용한 자기충전 콘크리트의 품질 특성에 관한 연구 (An Experimental Study on the Quality Properties of Self-Compacting Concrete Containing Tailings in Sangdong Mine)

  • 최연왕;정문영;정명채;김용직;구기정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.437-440
    • /
    • 2003
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder of self-compacting concrete(SCC). The experimental tests for slump-flow, reaching time to the slump-flow of 500mm, V-funnel and U-box were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The result of this study, in case of SCC mixed with tailings, slump-flow was decreased with increasing mixing ratio. But reaching time slump-flow of 500mm, V-funnel and U-box were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and static modulus of elasticity were checked with the requirements specified by Korean Industrial Standard(KS). The compressive strength of SCC was decreased with increasing replacement, splitting tensile strength and static modulus were similar to those of normal concrete.

  • PDF