• Title/Summary/Keyword: tensile loads

Search Result 413, Processing Time 0.026 seconds

A Study on the Fatigue Characteristics and the Behavior of Crack Propagation by Overload and Bending Moment in Car Body Structure (차체구조물에서 면내 굽힘모우멘트 및 과하중이 피로특성과 균열전파 거동에 미치는 영향에 관한 연구)

  • 성기찬;장경복;정진우;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.652-657
    • /
    • 2001
  • To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. It is necessary to test by method considering random loads with variable amplitude for strength design of vehicle body structure, because driving cars are actually subjected to random loads with variable amplitude in the road. Although this condition, nearly all tests haute been performed under constant load conditions in the laboratory because it is impossible to replay like an actual conditions. In this study, using in-plane bending type specimens, the overload factor affecting on the fatigue strength, crack initiation and propagation directions of spot-welded specimens have been studied.

  • PDF

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Refined 3-D Stress Analysis of Composite Wavy-Lap Joint (복합재료 Wavy-Lap Joint의 3-D 상세 응력 해석)

  • Shin, Hun;Lee, Chang-Sung;Kim, Seung-Jo;Kim, Wi-Dae
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.168-171
    • /
    • 2001
  • Due to intrinsic load eccentricity, severe peel stress concentration occurs at both ends of the single-lap joint. To avoid load eccentricity as well as the singular tensile peel stress in the joint interface, composite wavy-lap joint is proposed. In this paper, refined 3-D stress analysis of wavy-lap joint is performed by finite element method using parallel mutifrontal solver. Analysis results show that the singular tensile peel stress concentration is totally avoided in wavy-lap joint, and that loads are more evenly transferred over the length of the joint. Therefore, the strength of wavy-lap joint is significantly higher than that of conventional single-lap joint. And it is believed that even higher strengths can be obtained by optimizing the new design configuration.

  • PDF

The Combined Tensile and Torsional Behavior of Irregular Fibers

  • He, Weiyu;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • Most fibers are irregular, and they are often subjected to combined loading conditions during processing and enduse. In this paper polyester and wool fibers under the combined tensile and torsional loads have been studied for the first time using the finite element method (FEM). The dimensional irregularities of these fibers are simulated with sine waves of different magnitude and frequency. The breaking load and breaking extension of the fibers at different twist or torsion levels are then calculated from the finite element model. The results indicate that twist and level of fiber irregularity have a major impact on the mechanical properties of the fiber and the effect of the frequency of irregularity is relatively small.

Effect of Residual Stress in Al5083 TIG Weld Region on Fatigue Crack Propagation Behavior (Al5083재 TIG용접부의 잔류응력이 피로균열전파거동에 미치는 효과)

  • Lee, Ouk-Sub;Park, Chan-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.943-951
    • /
    • 1999
  • The welded structure unnecessarily remains residual stress due to the very high heating of local region and lastly cooling. The residual stress sometimes causes fracture initiation of welded structures. In this paper, distribution and magnitude of tensile and compressive residual stresses in the TIG(Tungsten Inert Gas) welded aluminum alloy such as Al5083-H112 are measured by using the hole-drilling method. Furthermore, the effects of residual stresses in the TIG welded aluminum CCT(Center Crack Tension) and SEN(Single Edge Notched) Specimens on the fatigue crack propagation behavior are analyzed. The fatigue cracks initiated at residual stresses region are influnced by tensile and compressive residual stresses. However, the effects are found to be released fast for both cases according to the cyclic loads and extension of crack length.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

Effect of tempering on the repeated impact fatique life of the steel (강재의 충격피로파괴수명에 미치는 tempering 효과에 관한 연구)

  • 정재천
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.30-38
    • /
    • 1981
  • The fatigue characteristics of Si-Mn spring steel (AISI 9260-H, JIS SUP-6) were investigated on several heat treatment conditions. Repeated impact loads of 10kg-cm and 15kg-cm energy were applied with a cam roller drop hammer type impact fatigue testing machine. Specimens were oil-quenched, and tempered at 350.deg. C, 450.deg. C and 500.deg. C, respectively. Results obtained in these experiments are summarized as follows.; 1) The fatigue life of the specimen is decreased as the magnitude of constant impact energy is increased, regardless of heat treatment. 2) Generally, the fatigue life of the specimen is decreased as the tensile strength of the materials is increased. 3) Within the limit of these experiments, the fatigue life showed abrupt decrease at the tempering temperature of about 400.deg. C 4) The fatigue life is increased as the initial value of applied stress intensity factor(K$_{1}$) is decreased. This tendency is apparent for the low tensile strength materials.

  • PDF

Deformation Properties of Gold Bonding Wire for VLSI Packaging Applications (반도체 패키징용 Gold Bonding Wire의 변형특성 및 해석)

  • Kim K.;Hong S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.250-253
    • /
    • 2001
  • Mechanical properties of gold bonding wire for VLSI packaging have been studied. The diameters of gold wires are about 20-30 micrometer and fracture loads are 8-20 gram force. The elastic modulus, yield strength, fracture strength and elongation properties have been evaluated by micro-tensile test method. This work discusses for an appropriate selection of micro-force testing system and grip design in mim testing. The best method to determine gauge length of wire and to measure tensile properties has been proposed. The mechanical properties such as strength and elastic modulus of current gold bonding wire are higher than pure those of gold wire.

  • PDF

Development of a Process to Simultaneously Weld and Extrude Pipe Using a Spring Type Wire Material (스프링형상 와이어소재를 이용한 접합동시 파이프 압출성형공정 개발에 관한 연구)

  • Ku, K.M.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.317-322
    • /
    • 2015
  • A process for the concurrent welding and extruding of pipe was designed for continuous production of fin tubes. Unlike a conventional pipe extrusion, the new process is able to extrude a pipe continuously without limit of length by using spring type wire material. The current paper provides the basic research for welding during the extrusion using a spring type wire material. The object of the current study is to investigate the possibility that the spring type wire material could be extrude into a welded pipe. The appropriate extrusion ratio was selected through investigation of loads using computer simulations. As a result, experiments showed that pipe could be welded and simultaneously extruded with spring type wire material of aluminum. The tensile strength of the welded and extruded aluminum pipe can reach 80% of tensile strength of original aluminum feedstock.

An Cracking and Ultimate Behavior of Post-tensioned Prestressed High Strength Concrete Beams (포스트텐셔닝 공법의 프리트스레스트 고강도 빔부재의 균열 및 극한 거동)

  • Lee, Seong-Cheol;Choi, Young-Cheol;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • Although many structures. with high strength concrete have been recently constructed, the flexural behavior of reinforced and prestressed concrete beams with high strength concrete is not exactly defined. This paper presents an experimental study on the flexural strength of the high strength concrete beams. Five large scale beams simply supported were tested and measured. Each beam was loaded by two symmetrical concentrated loads applied at 1.25m from the center of span. The concrete strength, the prestressed force and longitudinal tensile reinforcement ratio vary from beam to beam. From the experimental tests, the flexural strength from tests is larger than the nominal flexural strength of codes. Moreover, the initial crack-load is affected by the prestressed force and the crack width and spacing are controlled by the longitudinal tensile reinforcement ratio.

  • PDF