• Title/Summary/Keyword: tensile damage

Search Result 682, Processing Time 0.024 seconds

Estimation of Icebreaking Forces and Failure Length of Ice Rubbles on Infinite Ice Sheet (무한 빙판에서의 쇄빙력과 파단 빙편의 크기 예측)

  • Choi, Kyung-Sik;Lee, Jin-Kyoung;Kim, Hyun-Soo;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.75-83
    • /
    • 2004
  • Ice rubble pieces broken by the bow impact load and side hull of an icebreaking vessel usually pass along the ship's bottom hull and may hit the propeller/rudder or other stern structures causing serious damage to ship's hull . Therefore it is important to estimate the size of broken ice pieces during the icebreaking process. The dynamic interaction process of icebreaker with infinite ice sheet is simplified as a wedge type beam of finite length supported by elastic foundation. The wedge type ice beam is leaded with vertical impact forces due to the inclined bow stem of icebreaking vessels. The numerical model provides locations of maximum dynamic bending moment where extreme tensile stress arises and also possible fracture occurs. The model can predict a failure length of broken ice sheet given design parameters. The results are compared to Nevel(1961)'s analytical solution for static load and observed pattern of ice sheet failure onboard an icebreaker. Also by comparing computed failure length with the characteristic length, the meaning of ice rubble sizes is discussed.

Analysis of Composite Response Based on Microstructure Details (복합재료의 미시특성에 따른 기계적 특성해석)

  • 김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.784-790
    • /
    • 2003
  • Present investigation shows the analysis results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting deformation, the projected damage type, and stress-strain behavior were computed depending on microstructure details such as the type of periodic reinforcement array, and the type of interface bonding. A two-dimensional finite element analysis was conducted based on the unit-cell of square, hexagonal, or diagonal periodic away For composite with strong interface bonding, the transverse stress vs. strain curve was generally increased with the increase of the ceramic volume fraction. For the composite with weakly bonded interface, however, the transverse stress vs. strain curve was reduced against the ceramic volume fraction. The decrease was caused by the interface debonding-induced stiffness reduction of the composite. For the composite of weakly bonded interface, the relative reduction rate in the final limit stress for hexagonal array was larger than that for square array. Outcome of the present study was compared favorably with the published literature data.

Prediction of Thermal Fatigue Life of Engine Exhaust Manifold under Thermo-mechanical Cyclic Loading (열적-기계적 반복하중을 받고 있는 엔진 배기매니폴드의 열피로 수명예측)

  • Choi, Bok-Lok;Chang, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.911-917
    • /
    • 2010
  • In this study, we performed structural and fatigue analyses of the engine exhaust manifold that was subjected to thermo-mechanical cyclic loading. The methodologies used in this study are based on an approach in which the techniques for modeling the exhaust system, the temperature-dependent properties of the material, and thermal cyclic loading are taken into consideration and a reliable strategy is adopted for failure prediction. An application example shows that at an elevated temperature, considerable compressive plastic deformation is observed and that at a low temperature, tensile stresses remain in those parts of the test exhaust manifold where failure is observed. In order to predict fatigue life, mechanical damage is determined on the basis of the stress.strain hysteresis loops by using the classical Coffin.Manson equation and by adopting a method in which the dissipated plastic energy is taken into consideration.

Numerical study on contact behavior of TSL (Thin Spray-on Liner) (접촉 거동을 고려한 TSL(Thin Spray-on Liner)의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.665-674
    • /
    • 2015
  • A TSL (Thin Spray-on Liner) which consists of polymers has a higher initial strength, faster construction time and higher waterproofing performance than the conventional cementitious shotcrete. Main supporting mechanism of TSL is the adhesion and tensile strength which is distinct from the conventional shotcrete. Even though highly in demand due to its outstanding characteristics, TSL is not yet well-known support material. In this study, to evaluate contact behavior of TSL, numerical analysis was performed with comparing result from laboratory tests. From the analysis, cohesive behavior at the contact surface between TSL and rock can be evaluated by using combination of cohesive and the damage model. In addition, results show that the cohesive stiffness controled slope between force and displacement, the fracture energy controled level of force at the contact.

Fracture Behavior Analysis in CFRP Specimens by Acoustic Emission and Ultrasonic Test (음향방출 및 초음파시험을 이용한 CFRP 시험편의 파괴 거동 해석)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.251-260
    • /
    • 2001
  • Damage Profess of CFRP laminates under monotonic tensile test was characterized by the correlation between Acoustic Emission(AE) and Ultrasonic Test(UT). The amplitude distribution of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pullout and fiber fracture as load is increased. In addtion, the characteristics of ultrasonic amplitude attenuation are useful lot analysis of the different type of fracture mechanism. Different orientation of carbon fiber reinforced plastic specimens were used to investigate the AE amplitude range and ultrasonic amplitude attenuation. Finally, loading-unloading tests were carried out to check Felicity effect. During the tests, ultrasonic amplitude attenuation was investigated at the same time and compared with AE parameters. The result showed that two parameters of both AE and UT could be effectively used for analysis of fracture mechanism in CFRP laminates.

  • PDF

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Evaluation of Structural Performance for Filament Wound Composite Ablative Tubes (필라멘트와인딩된 복합재 내열튜브의 구조 성능 평가)

  • 윤성호;황태경;윤남균;문순일
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2002
  • Composite ablative tubes required capabilities of ablative and structural characteristics were fabricated through filament winding technique and several experiments were conducted to evaluate the structural performance of composite ablative tubes. For this purpose, manufacturing procedures were briefly described and then resin digestion method was applied to measure the fiber volume fraction and the void content of composite ablative tubes. The configuration of tensile specimen fur composite ablative tubes with not losing the continuity of reinforced fibers was suggested by evaluating mechanical properties of several types of the specimen with different widths. Also, suitable processing variables for composite ablative tubes were determined by evaluating mechanical properties of several types of the specimen with different processing variables. In addition, acoustic emission signals were obtained during the proof test and could be applicable to study the crack initiation and the damage mode of composite ablative tubes. Finally, the structural reliability of composite ablative tubes could be verified to satisfy design requirements through the proof and burst tests.

Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites (3차원 직조형 열가소성수지 복합재료 제조 및 특성화)

  • 홍순곤;변준형;이상관
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

Prediction and Analysis of Fracture Strength for Surface Flawed Laminates (표면 손상을 입은 적층판의 강도 예측 및 분석)

  • 최덕현;황운봉
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2003
  • In this paper, the fracture strength of the surface damaged laminates was predicted by applying the fracture strengths of the unflawed and flawed laminates. For prediction, the theoretical equation about the fracture strength of laminates was simplified applying classical laminate theory and was applied to the surface damaged laminates. Lagace's and Tsai's experimental data were used for verifying the theoretical equation. Moreover, to verify the theoretical prediction, an experiment was performed. Surface unflawed laminate and flawed laminates were fabricated and the experiments were made and these results were compared with theoretical predictions. The specimens' fiber direction was same to the tensile direction and the theoretical predictions and the experimental results were showed good agreement. Therefore, by this equation, the fracture strength of structures made of composites will be able to be predicted when the surface of the structures was damaged.