DOI QR코드

DOI QR Code

Analysis of Composite Response Based on Microstructure Details

복합재료의 미시특성에 따른 기계적 특성해석

  • 김태우 (국민대학교 기계자동차공학부)
  • Published : 2003.08.01

Abstract

Present investigation shows the analysis results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting deformation, the projected damage type, and stress-strain behavior were computed depending on microstructure details such as the type of periodic reinforcement array, and the type of interface bonding. A two-dimensional finite element analysis was conducted based on the unit-cell of square, hexagonal, or diagonal periodic away For composite with strong interface bonding, the transverse stress vs. strain curve was generally increased with the increase of the ceramic volume fraction. For the composite with weakly bonded interface, however, the transverse stress vs. strain curve was reduced against the ceramic volume fraction. The decrease was caused by the interface debonding-induced stiffness reduction of the composite. For the composite of weakly bonded interface, the relative reduction rate in the final limit stress for hexagonal array was larger than that for square array. Outcome of the present study was compared favorably with the published literature data.

본 논문은 세라믹재료가 강화재로써 보강된 복합재료가 횡방향의 단축인장하중을 받는 경우, 복합재료의 변형, 재료내 발생되는 손상의 특징, 및 응력-변형률 특성에 관한 컴퓨터 해석결과이다. 해석은 SiC/Ti 시스템을 대상으로 하였으며, 특성은 강화재의 배열형태, 강화재/기지 계면에서의 결합유무, 강화재의 부피분율변화에 대하여 각기 해석되었다. 계면에서 강한 결합이 있는 복합재와는 달리, 약한 결합의 복합재는 인장하중에 의하여 세라믹/기지 계면에서 분리가 발생되었다. 이 분리는 전체 복합재의 강성을 감소시키며, 세라믹 강화재의 부피분율이 증가할수록 탄성계수 및 횡방향 평균응력의 최종크기를 나타내는 한계응력의 크기감소로 나타났다. 계면결합이 강한 경우는 세라믹 부피분율이 증가할수록 사각형 배열보다는 육각형배열의 복합재에서 다소 큰 증가율로 나타났다. 그러나, 계면결합이 약한 경우는 세라믹 부피분율이 증가할수록 사각형 배열보다는 육각형배열의 복합재에서 상대적으로 큰 감소율로 해석되었다. 본 연구의 해석결과는 알려진 문헌의 결과와 잘 일치하였다.

Keywords

References

  1. Aerospace Sci. and Tech. v.7 Multi-scale Modelling of Silicon Carbide Reinforced Titanium MMCs: Applications to Advanced Compressor Design N.Carrere;F.Feyel;S.Kruch https://doi.org/10.1016/S1270-9638(03)00028-2
  2. Mat. Sci. and Eng. v.A263 Continuous Fibre Reinforced Titanium and Aluminium Composites: A Comparison A.Vassel
  3. Composites: Part A v.33 Oxidation of the Carbon Protective Coating in SCS-6 Fibre Reinforced Titanium Alloys P.W.M.Peters;J.Hemptenmacher https://doi.org/10.1016/S1359-835X(02)00151-3
  4. Mat. Sci. and Eng. v.A300 Development of SiC/TiAl Composites: Processing and Interfacial Phenomena S.Djanarthany;J.Viala;J.Bouix
  5. Acta Metall. Mater. v.40 no.10 Damage due to Fracture of Brittle Reinforcements in a Ductile Matrix G.Bao https://doi.org/10.1016/0956-7151(92)90324-8
  6. J. Mat Sci. Lett. v.10 Effective Thermal Conductivity of Composites with Fibre-matrix Debonding T.D.Fadale;M.Taya https://doi.org/10.1007/BF00722767
  7. Computers & Structures v.56 no.2 Micromechanical Modeling of Damage Growth in Titanium Based Metal-matrix Composites J.A.Sherwood;H.M.Quimby https://doi.org/10.1016/0045-7949(95)00040-N
  8. Composites v.25 no.7 The Effect of the Interface on the Thermal Conductivity of Titanium-based Composites F.H.Gordon;S.P.Turner;R.Taylor;T.W.Clyne https://doi.org/10.1016/0010-4361(94)90188-0
  9. Damage and Interfacial Debonding in Composites The Effect of Fiber Architecture on the Inelastic Response of Metal Matrix Compsites with Interfacial and Fiber Damage A.Sankurathri;S.Baxter;M.Pindera
  10. Comput. Mater. Sci. v.21 Multiple-cell Modeling of Fiber-rein-forced Composites with the Presence of Interphases using the Boundary Element Method X.Chen;Y.Liu https://doi.org/10.1016/S0927-0256(00)00218-4
  11. Failure Analysis of Industrial Composite Materials E.E.Gdoutos;K.Pilakoutas;C.A.Rodopoulos
  12. Int. J. Solids. Struct. v.39 Transverse Tensile and Creep Modeling of Continuously Reinforced Titanium Composites with Local Debonding B.Bednarck;S.M.Arnold https://doi.org/10.1016/S0020-7683(01)00216-5
  13. An Introduction to Composite Materials D.Hull;T.W.Clyne
  14. Materials Science and Engineering W.Callister,Jr.
  15. Acta Metall. Mater. v.43 no.7 Mechanics of Hot Isostatic Pressing of a Densified Unidirectional SiC/Ti Composite Y.A.Bahei-El-Din;G.J.Dvorak https://doi.org/10.1016/0956-7151(94)00477-Y
  16. J. Kor. Ceram. Soc. v.38 no.6 Micromechanical Analysis for Transverse Properties of Ceramic/Metal Composite T.Kim;S.Park
  17. ABAQUS/Standard Users Manual Hibbit
  18. Composites: Part A v.30 Deformaton, Yield and Fracture of Unidirectional Composites in Transverse Loading J.M.M.de Kok;T.Pejis https://doi.org/10.1016/S1359-835X(98)00171-7
  19. Int. J. Solids Structures v.35 no.21 Limit Stress Concitions for Weakly Bonded Fiber Composites Subjected to Transverse Biaxial Tensile Loading Z.Z.Du;F.W.Zok https://doi.org/10.1016/S0020-7683(97)00279-5
  20. Composites, Sci. and Tech. v.61 A Micromechanics-based Approach to the Mechanical Behavior of Brittle-matrix Composites J.Lamon https://doi.org/10.1016/S0266-3538(01)00120-8
  21. Mechanics of Materials v.33 A Micromechanical Model for Multiple Crazing in High Impact Polystyerne S.Socrate;M.C.Boyce;A.Lazzeri https://doi.org/10.1016/S0167-6636(00)00068-5
  22. Scripta Mater. v.48 Determining Interfacial Thermal Residual Stress in SiC/Ti-15-3 Composites Y.M.Xing;Y.Tanaka;S.Kishimoto;N.Shinya https://doi.org/10.1016/S1359-6462(02)00554-7
  23. Int. J. Sol. Structures v.34 no.2 Elastic Moduli of Brittle Matrix Composites with Interfacial Deboncing F.G.Yuan;N.J.Pagano;X.Cai https://doi.org/10.1016/S0020-7683(96)00003-0