• Title/Summary/Keyword: tensile damage

Search Result 682, Processing Time 0.025 seconds

Damage Analysis of Train Rail Fishplate (전동차 선로 이음매 판의 파손 해석)

  • Seo-Hyun Yun;Byoung-Chul Choi;Ki-Hang Shin;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.341-347
    • /
    • 2023
  • The subway is one of the most common and important means of transportation in modern society. In order to use the subway safely, tracks are necessary, but trains are prone to derailment and collisions. In order for the train to run safely on the track, the fishplate that connects the line connection is used. The damaged railway was a fishplate for connecting subway lines used for 11 years, and damage analysis and countermeasures were presented. Beach marks were observed on both fracture surfaces, and striations appeared at the range of crack propagation. The damaged part is Cr carbide, which has a higher hardness than the base metal, and is judged to be embrittled and destroyed by fatigue. The SM50C fishplate was subjected to a cyclic stress of about 59% of the upper limit of tensile-compression fatigue limit, but inclusions were the cause of failure. In order to prevent fatigue failure of the SM50C steel fishplate, the occurrence of inclusions should be minimized and processed to have a homogeneous structure when manufacturing the fishplate. In addition, compressive residual stress is given through surface modification such as peening to control crack generation. It is necessary to minimize the change in shape that can become a stress concentration part along with accurate fastening of the bolt, and to design the stress distribution to be as uniform as possible.

Evaluation of Cross-Sectional Damage for RC Column Subjected to Axial Loading and Steel Corrosion (철근 부식과 축방향 하중을 받는 철근-콘크리트 기둥 단면의 손상 평가)

  • Changyoung Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.476-483
    • /
    • 2023
  • The present study concerns modelling the structural behaviour for concrete structure into the crack initiation at corrosion of steels. The degradation source included the axial load and steel corrosion. A development of the rust formed on the steel surface was considered with the interfacial gap between steel and concrete. As a result, the tensile damage could occur on the surface of concrete into the cracking with no steel corrosion, which could be further developed by the increasing rust formation, while the cracking at the steel-concrete interface was mainly attributed to the compressive deformation, being restricted within the interfacial zone.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Damage of Overlaid Concrete Structures Subjected In Thermally Transient Condition by Rainfall (강우에 따른 콘크리트 덧씌우기 보수체의 손상에 관한 연구)

  • 윤우현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.491-498
    • /
    • 2001
  • The failure phenomenon of overlaid concrete structures, such as surface crack and peel-off failure in the contact zone, was investigated due to temperature shock(rainfall). To investigate this failure phenomenon, the surface tensile stress, and the shear stress, the vertical tensile stress in the contact zone were analysed using the non-linear stress-strain relationship of material such as strain-hardening- and strain-softening diagrams. Rainfall intensity, overlay thickness and overlay material were the main variables in the analyses. It is assumed that the initial temperature of overlaid concrete structures was heated up to 55$\^{C}$ by the solar heat. With a rain temperature 10$\^{C}$ and the rainfall intensity of nR=1/a, tR=10min, 60min, the stress states of overlaid concrete structures were calculated. The result shows that only fictitious cracks occurred in the overlay surface and no shear bond failure occurred in the contact zone. The vortical tensile stress increasing with overlay thickness was proved to be the cause of peel-off failure in the contact zone. The formulae for relationship between the vertical tensile stress and overlay thickness, material properties were derived. Using this formulae, it is possible to select proper material and overlay thickness to prevent failure in the contact zone due to temperature shock caused by rainfall.

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.

Effect of Extract from Fermented Black Soybean (Glycine max var. Seoritae) on the Hair Damaged by Decolorization (서리태 발효추출물이 탈색을 통해 손상된 모발에 미치는 영향)

  • Jung, Heehoon;Shin, Min Kyu;Lee, Su Yel;Lee, Sang Rin;Kim, Moo Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • This study was carried out to investigate the hair protection effect of fermented black soybean extracts. The morphological characteristics, tensile strength and constitutional changes of the hair were analyzed and compared when the hair was chemically oxidized and then treated with fermented black soybean extract. As a result, treatment of oxidizing agent on virgin hair caused damage on the cuticle layer of the epidermis and decreased in tensile strength of hair from $14.32{\pm}0.83g/cm^2$ to $12.32{\pm}0.79g/cm^2$. FT-IR analysis showed the peaks at 1,077, 1,041, and $801cm^{-1}$ of the hair treated with oxidizing agent were increased compared to peak values of virgin hair, indicating that cystein in hair was decreased which is crucial to disulfide bond between keratin. On the other hand, when the damaged hair is treated with the fermented black soybean extract, cracks in the cuticle layer of the epidermis were filled, tensile strength was restored to $14.27{\pm}0.96g/cm^2$ and the ratio of oxidized cysteine in hair was decreased. These results suggest that the fermented black soybean extract is worthy of further investigation as a protective material for hair damaged by oxidizing agents.

Diagnosis for damage of fire hydrant with long valve stem in power plant. (발전소내 긴 밸브 stem을 갖는 옥외 소화전의 파손 현상 규명)

  • Sohn, Seok-Man;Lee, Sang-Guk;Lee, Wook-Ryun;Lee, Jun-Shin;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3512-3517
    • /
    • 2007
  • Nuclear power plant has many external fire hydrants that have to operate in the state of emergency such as facility fire, forest fire. The valve stem of one among them was broken 3 times for 4 years. It had long valve stem and operated under high water pressure. The elongation and the tensile strength for the broken valve stem was measured to examine the defect of material property. And the vibration level and the natural frequencies was detected to check the resonance. As the result of a diagnosis, the cause of this fault is proven buckling of long valve stem.

  • PDF

An Experimental Study on the Rail Wear Reduction Using Coating Material in Curved Track (레일코팅재를 이용한 곡선부 레일마모저감에 관한 실험적 연구)

  • Ha, Beom-Yong;Park, Yong-Gul;Lee, Dong-Wook;Choi, Jung-Youl;Kang, Yun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2153-2162
    • /
    • 2011
  • The goal of this Paper is to reduce rail's wear in curved track by applying an additional surface layer material(High hardness and High resistance capacity of wear) on the top of the railhead. In order to evaluate appropriation of a coating material, experimental tests such as the varieties of fundamental properties tests (hardening, wear, tensile, and bending) and RCF(rolling contact fatigue)test were performed to establish fatigue wear and damage mechanism. As a result, wear performance of coating rail is better than heated rail about 6times and normal rail about 8~9times.

  • PDF

Experimental study and numerical investigation of behavior of RC beams strengthened with steel reinforced grout

  • Bencardino, Francesco;Condello, Antonio
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.711-725
    • /
    • 2014
  • The purpose of this study is to evaluate the behavior and the strength of SRG (Steel Reinforced Grout) externally strengthened Reinforced Concrete (RC) beams by using a nonlinear numerical analysis. The numerical simulation was carried out by using a three-dimensional (3D) finite element model. An interface element with a suitable damage model was used to model the connection between concrete surface and SRG reinforcing layer. The reliability of the finite element 3D-model was checked using experimental data obtained on a set of three RC beams. The parameters taken into consideration were the external configuration, with or without U-end anchorages, the concrete strength, the amount of internal tensile steel reinforcement. Conclusions were made concerning the strength and the ductility of the strengthened beams by varying the parameters and on the effectiveness of the SRG reinforcing system applied with two types of external strengthening configuration.

Advanced Methodologies for Manipulating Nanoscale Features in Focused Ion Beam

  • Kim, Yang-Hee;Seo, Jong-Hyun;Lee, Ji Yeong;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.208-213
    • /
    • 2015
  • Nanomanipulators installed in focused ion beam (FIB), which is used in the lift-out of lamella when preparing transmission electron microscopy specimens, have recently been employed for electrical resistance measurements, tensile and compression tests, and in situ reactions. During the pick-up process of a single nanowire (NW), there are crucial problems such as Pt, C and Ga contaminations, damage by ion beam, and adhesion force by electrostatic attraction and residual solvent. On the other hand, many empirical techniques should be considered for successful pick-up process, because NWs have the diverse size, shape, and angle on the growth substrate. The most important one in the in-situ precedence, therefore, is to select the optimum pick-up process of a single NW. Here we provide the advanced methodologies when manipulating NWs for in-situ mechanical and electrical measurements in FIB.