• Title/Summary/Keyword: tensile bars

Search Result 224, Processing Time 0.028 seconds

A Comparative Study on the Testing Methods for the Analysis of Tensile Strength of GERP Rebars (GFRP 보강근의 인장강도 분석을 위한 시험방법 비교 연구)

  • You, Young-Chan;Park, Ji-Sun;You, Young-Jun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.303-312
    • /
    • 2006
  • The main objective of this experimental study is to examine the feasibilities of each testing method with various kinds of grip systems for the analysis of tensile strength of GFRP(glass fiber reinforced polymer) reinforcing bars. Three types of grip systems were examined such as resin-sleeved pipe-type grip proposed by CSA(Canadian Standard Association), frictional resistance type metal grip by ASTM(American Standard for Testing and Materials) and wedge-inserted cone-type grip normally used in prestressing tendons. Also, mechanical properties of GFRP rebars with different surface deformations were investigated for each different type of testing grip used in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that the highest tensile strengths of GFRP rebars were observed when tested by resin-sleeved grip system regardless of their different surface deformations. But tensile strengths of GFRP rebars by ASTM grip system are only 10% less than those by CSA grip system. On the other hand, CSA grip is not only difficult to prepare but also not disposable. Therefore, ASTM grip system is recommended as a practical alternative to estimate the tensile strength of GFRP rebars.

A Study on the Durability of Glass Fiber Reinforced Plastics Rebars (GFRP 리바의 내구성에 관한 연구)

  • Moon, C.K.;Kim, Y.H.;Park, Y.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • The mechanical properties of glass fiber reinforced polymer reinforcing bars(rebar) in various environment conditions such as moisture, chloride, alkali and freeze-thaw actions at temperature ranging from room temperature($25^{\circ}C$) to high temperature of up to $80^{\circ}C$ have been studied. The test results indicated that tensile strength and interfacial shear strength of GFRP bar were decreased with the increasing of temperature and holding time of each environment condition. The degradation in alkali environment. was more serious than those in the other environments.

  • PDF

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.

Fundamental Study of Behavior on Steel·Concrete Composite Beam Reinforced Steel Fiber (강섬유를 보강한 강상판 합성보의 거동에 관한 기초적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • Steel fibre reinforced concrete (SFRC) were considered a new technology for the construction industry. However today this technology has found wider acceptance among the construction industry. Currently, steel fibres are used in varied segments in many application areas across different segments in the construction industry, especially in tunneling, airports, warehouses, etc. Time and safety are the main factors are among the various advantages which renders steel fibres superior to the competing product. For fibers reinforcing, The maximum load carrying capacity is controlled by fibers pulling out of the composite because fiber reinforcing does not have a deformed surface like larger steel reinforcing bars. The study demonstrated that above concept is applicable and effective in concrete structure by analytical study. The analytical result appears that SFRP have the potential to significantly increase the strength of existing concrete structures, while at the same time dramatically improving their fracture energy characteristics.

  • PDF

Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis

  • Kim, T.H.;Cheon, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.63-79
    • /
    • 2012
  • The purpose of this study is to evaluate the behavior and strength of prestressed concrete deep beams using nonlinear analysis. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, the RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of prestressed concrete. The smeared crack approach was incorporated. A bonded or unbonded prestressing bar element is used based on the finite element method, which can represent the interaction between the prestressing bars and concrete of a prestressed concrete member. The proposed numerical method for the evaluation of behavior and strength of prestressed concrete deep beams is verified by comparing its results with reliable experimental results.

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures (콘크리트 보강용 FRP 리바의 개발 및 내구 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Yoon, Jong-Han;Hwang, Kum-Sik;Cho, Yong-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement (전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델)

  • Chun, Sung-Chul;Hong, Sung-Gul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF