• Title/Summary/Keyword: tennis racket

Search Result 24, Processing Time 0.024 seconds

Study on the Injury and Rehabilitation of Racket Athletes with Disabilities

  • Zheng, ChangSheng;Shin, Hwa-Kyung;Kim, Young sik
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.228-235
    • /
    • 2019
  • Purpose: This study examined the injury and rehabilitation of athletes with disabilities in racket sports projects (i.e., badminton, table tennis, and wheelchair tennis). In addition, the characteristics of each project and the differences among those projects are discussed. Methods: Business team athletes with disabilities in racket sport were enrolled as subjects (i.e., 19 badminton athletes, 19 table tennis athletes, and 19 wheelchair tennis athletes). The real conditions of the injury, injury severity, injury site, symptoms, and rehabilitation methods after injury were analyzed. Results: No significant differences were observed among the actual condition, injury severity, symptoms and the methods of rehabilitation on racket sport for athletes (i.e., badminton, table tennis, and wheelchair tennis athletes) with disability. The differences were focused mainly on the injury sites due to the characteristics of the different projects, and specific technical actions. Conclusion: This study examined the real condition of the injury, injury severity, injury site, symptoms and rehabilitation methods after the injury on the rackets (i.e., badminton, table tennis, and wheelchair tennis) athletes with disabilities. The data can be used to eliminate the incidence of injury and minimize the injury severity for racket athletes with disabilities. In addition, it can also be used for the disabled, who like racket projects, as the fundamental material to prevent injury and assist in recovery.

The effects of carbon nanotubes on improving Tennis Racket Performance and resistance based on Nanotechnology

  • MingYang Xie;Rui Zhang;M. Shokravi
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.157-165
    • /
    • 2024
  • This paper discusses the importance of carbon nanotubes (CNTs) in enhancing performance and resistance of tennis rackets with the application of nanotechnology. This paper discusses how nanomaterials work toward making the equipment lighter, stronger, and more durable by combining CNTs with composite materials in Tennis Rackets. Distinctive properties of the CNTs, such as the very high strength-to-weight ratio and exceptional mechanical resilience, have been exploited in racket performance optimization for better power transmission, increased control on shots, and improved durability. Resistance to wear and tear is discussed in terms of the life of a CNT-enhanced tennis racket and its continued performance with time. The findings imply that the CNTs increase the security and overall performance of tennis rackets, hence promising further innovation in sports technology equipment and the various performances expected from users.

Comparison on the Kinematic Variables of Racket Movement According to Velocity in Tennis Serve (테니스 서브 속도에 따른 라켓 움직임의 운동학적 변인 비교)

  • Lee, Dong-Jin;Oh, Cheong-Hwan;Jeong, Ik-Su;Park, Chan-Ho;Lee, Gun-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study were to find out the differences in kinematic variables of racket movement by performing the tennis serve. Three top male tennis players participated in this study. Three synchronized high-speed cameras were used to record the service action of top players for Three dimensional video analysis. The results of this study showed that (1) the velocity of the tennis racket at impact is important to the generation of racket velocity to Y-axis. This result indicates that forward motion and upward movement of the racket; (2) with respect to racket angular velocity at impact, the fast angular momentum of X-axis is important to generate the velocity of the tennis ball. This result indicate upward movement of the racket with a strong flexor of wrist joint; (3) the velocity of the tennis ball was influenced by the change of angular linking the Z-axis to -X-axis. This result indicates that the high velocity of the tennis ball is obtained from having the racket unitedly moving to the direction of the bill's flight at the acceleration interval and acquiring the distance of acceleration with the racket head vertically to the ground at the back scratching.

Angular Kinematic Analysis of Forehand Drive and Smash in Table Tennis (탁구 포핸드 드라이브와 스매시의 각운동학 분석)

  • Son, Won-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • This study was conducted with 8 male table tennis players who won national competitions. Of the subjects, 4 used a racket of penholder grip and 4 used one of shake hand grip, and all of them were right.handers. We analyzed three-dimensional angular characteristics such as angular component, swing trajectory and swing posture related to the racket swing motions of forehand drive and smash in table tennis, and drew conclusions as follows. Racket angle(p<.05) and racket swing angle(p<.01) were significantly different between the two motions. In smash, the back swing posture maintained the racket angle large by holding the racket upright and made the racket swing angle small for high ball speed. In addition, the height of the racket head in back swing posture was also significantly different between the two motions. In phg on impact, the open angle of the long axis of the racket was significantly different between the two motions. This shows that impact was applied a bit behind for giving top spin to the ball. In the back swing of drive, the gradient of the upper body was slightly larger in shg than in phg probably because of the structural difference of the racket grip in the neutral posture.

Measurement of Skin Dose from Using the Treatment Immobilization Devices (치료 보조기구 사용 시 후 방향 피부선량 측정)

  • Je, Jae-Yong;Park, Chul-Woo;Noh, Kyung-Suk
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.107-110
    • /
    • 2009
  • The research was about the relation between the dorsal side dose measured by using the phantom body (Alderson Rando Phantom) and factors like contacted material of the patients, the size of the field, angle of incidence. Compared with mylar (tennis racket), the dose on $10{\times}10\;cm^2$ field size of cotton was increased by 2% and by 8% in the case of breast board. In the case of $15{\times}15\;cm^2$ field size, the dose was increased by 6% compared with $10{\times}10\;cm^2$ size. The field size of $20{\times}20\;cm^2$ resulted in 10% increase of dose, while $5{\times}5\;cm^2$ produced 13% decrease. Compared with incident angle $0^{\circ}$, the cases for the incident angle $5^{\circ}$ had 0.4% less dose for breast board, 0.5% for tennis racket, 1.1% for cotton. The cases for the incident angle $10^{\circ}$ had 1.5% less dose for breast board, 1.9% for tennis racket, 2.6% for cotton. For the incident angle $15^{\circ}$, breast board, tennis racket, cotton caused decrease of dose by 3.9%, 2.6%, 3.86% respectively. Resultantly carbon material can cause more skin dose in treatment field. By the results of this study, we recommend that one should avoid the contact between the carbon material and skin.

  • PDF

Analysis of Racket Head Velocity of Tennis Forehand Stroke by Stance Patterns (스탠스 유형에 따른 테니스 포핸드 스트로크의 라켓헤드 속도분석)

  • Seo, Kuk-Woong;Kang, Young-Teak;Lee, Kyung-Soon;Seo, Kook-Eun;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2007
  • Recently tennis techniques has been changed in stance patterns. Stance is consist of square stance, open stance and semi-open stance. The purpose of this study was to analyze the kinematics variables of racket head velocity during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study who use semi western grip right-handed person more than career 7 years. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. The results showed that racket head velocity significant difference was not observed in stance types between swings at impact. Y and Z components of racket head velocity for horizontal and vertical swing at second prior to impact and at impact were that y components velocity was faster horizontal swing than vertical swing and z components velocity was later horizontal swing than vertical swing. Statistically significant variable to racket head velocity and Pearson's correlation were drawn as follows. 1. Z components of racket head velocity in square stance was significant correlation by right knee joint. 2. Y components of racket head velocity in semiopen stance was significant correlation by left hip joint. 3. Y components of racket head velocity in open stance was significant correlation by left ankle joint.

A Kinematic Analysis of Two Hand Backhand Stroke Swings in Tennis (테니스 양손 백핸드 스트로크 스윙자세의 운동학적 분석)

  • Kang, Sang-Hack;Son, Won-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2007
  • The present study analyzed the two hand backhand stroke motion of six female high school tennis players who won the championship at the National Athletic Meeting in 2006, and drew conclusions as follows. The open angle of the racket at the moment of impact was 90 degree without significant difference among the players, making a wide contact between the ball and the racket. The racket angle was 43 degree at take back and 91 at impact, showing a style of holding the racket rather upright in general. In back swing from the top to the impact, the shoulders and the hips turned by 97 degree and 40 degree, respectively. At the moment of impact, the height of the impact was 54%H, and the position of the impact was 10%H ahead of and 37%H left from the central axis of the body. The right hand made a continental grip and the left hand made a Western or semi Western grip. Through the entire swing motion, the grip angle of the left hand was smaller than that of the right hand, and those who maintained a large grip angle of the right hand at the moment of take back put the racket head slightly farther from the body. In the swing of the racket head from the lowest point to the impact, the vertical length of movement was 11%H and the horizontal length of movement was 60%H, quite long.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

The Kinematic Analysis of the Tennis Flat Serve Motion (테니스 플랫 서브 동작의 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Su-Nam;Nam, Taek-Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.97-108
    • /
    • 2006
  • C. H. OH, S. N. CHOI, T. G. NAM, The Kinematic Analysis of the Tennis Flat Serve Motion, Korean Jiurnal of Sports Biomechanics, Vol. 16, No. 2, pp. 97-108, 2006. By the comparison and the analysis of the different factors during the tennis flat serve motion such as the required time per section, the movement displacement of the racket, the velocity of the upper limbs joints, the physical center of gravity, and the angle and the angular velocity of the upper limbs joints between an ace player and a mediocre player, these following results were drawn. First, the experiment result of the total time required per section in a tennis flat serve motion showed that an ace player was faster than a mediocre player by 0.4 seconds. This result suggested that it was required to increase the speed of the racket head by a swift swing to perform an effective flat serve motion. Second, the experiment result of the movement displacement of the racket in the tennis flat serve motion showed that an ace player greatly moved toward the left side on an x-axis. But both an ace and a mediocre player were shown to be at the similar points on a y-axis at the moment of the impact of the racket. An ace player was also shown to be located at a higher position on a z-axis by 0.23m. Third, the velocity of the center of gravity of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fourth, the velocity of the upper limb joints of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fifth, the experiment result of the speed of the racket head in tennis flat serve motion showed that a mediocre player was faster than an ace player in the first phase, but the latter was faster than the former in the second, third, and the fourth phases. Sixth, at the moment of impact of a tennis flat serve, an ace player had greater flexion of the angle of the wrist joints by an 11.8 degree than a mediocre player. An ace player also had greater extension of the angle of the elbow joint and the shoulder joint respectively by a 5.2 degree and a 1.4 degree with a mediocre player. Seventh, an ace player had greater angular velocity of the upper limb joints and the hip joints than a mediocre player at the moment of the impact of tennis flat serve. Eighth, an ace player was shown to have a greater change of the forward and the backward inclination (or the anterior and posterior inclination) of the upper body

A study on the CAD for extension of sweet spot of the tennis racket (테니스 라켓의 안정타점영역의 확장을 위한 CAD화에 관한 연구)

  • Oh, Jae-Eung;Park, Ho;Hong, Ha-Yoon;Yum, Sung-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.95-105
    • /
    • 1988
  • The dynamic characteristics of a tennis racket were identified by experimental modal analysis and the sweet spot due to these was calculated. A tennis racket was selected as a model reference and modal parameters of the racket were estimated from the transfer function measured by experiment. The transfer function was reconstructed by the modified modal parameters on the assumption that the racket was locally modified, for example, a change in the material of the frame and the attachment of a damping material to the grip. The change of the dynamic characteristics, especially natural frequency and magnitude of the second and the third vibrational modes, were evaluated from the reconstructed transfer function. The change of the sweet spot due to the modified modal parameters was estimated and visualized through computer graphic simulation by the criterion of the sweet spot measured before structural modification. The modal parameters for improvement of the dynamic characteristics.