• Title/Summary/Keyword: tendon shape

Search Result 42, Processing Time 0.022 seconds

Screw Transformation Mechanism of Screw-Propelled Robot for Efficient Void Detection in Grease Pipe (스크류 추진형 검측 로봇의 효율적인 검측을 위한 스크류 구조 변화 메커니즘)

  • Kim, Dongseon;Kim, Hojoong;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.172-177
    • /
    • 2022
  • In general, detection robots using ultrasonic sensors are equipped with sensors to protrude outward or to contact objects. However, in the case of a screw-propelled robot that detects the inside of a reactor tendon duct, if the ultrasonic sensor protrudes to the outside, resistance due to grease is generated, and thus the propulsion efficiency is reduced. In order to increase the propulsion efficiency, the screw must be sharp, and the sharper the screw, the more difficult it is to apply a high-performance ultrasonic sensor, and the detection efficiency decreases. This paper proposes a screw shape-changing mechanism that can improve both propulsion efficiency and detection efficiency. This mechanism includes an overlapped helical ring (OHR) structure and a magnetic clutch system (MCS), and thus the shape of a screw may be changed to a compact size. As a result, the Screw-propelled robot with this mechanism can reduce the overall length by about 150 mm and change the shape of the screw faster and more accurately than a robot with a linear actuator.

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Hosseinnejad, Hossein;Lotfollahi-Yaghin, Mohammad Ali;Hosseinzadeh, Yousef;Maleki, Ahmad
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Development of a Robotic Hand using Shape Memory Alloy Actuators (형상기억합금 구동기를 이용한 로봇 손 개발)

  • Jeon, Chang Gook;Yoo, Dong Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • Shape Memory Alloys (SMAs) undergo changes in shape and hardness when heated or cooled, and do so with great force. Since wire-type SMAs contract in length when heated and pull with a surprisingly large force and move silently, they can be used as actuactors which replace motors. These SMA actuators can be heated directly with electricity and can be used to create a wide range of motions. This paper presents the mechanical design and control for a three fingered, six degree-of-freedom robotic hand actuated by SMA actuators. Each finger has two joints and each joint is actuated with two tendons in the antagonistic manner. In order to create the sufficient force to make the smooth motion, the tendon is composed of two SMA actuators in parallel. For controlling the current to heat the SMA actuators, PWM drivers are used. In experiments, the antagonistic interaction of fingers are evaluated.

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

The Effect of Different Starting Periods of Passive Exercise on the Clinical Outcome of Arthroscopic Rotator Cuff Repair

  • Back, Young-Woong;Tae, Suk-Kee;Kim, Min-Kyu;Kwon, Oh-Jin
    • Clinics in Shoulder and Elbow
    • /
    • v.17 no.2
    • /
    • pp.57-63
    • /
    • 2014
  • Background: To compare the effect of different starting periods of rehabilitative exercise (early or delayed passive exercise) on the rate of retear and other clinical outcomes after the arthroscopic repair of the rotator cuff. Methods: In total, 103 patients who underwent arthroscopic repair of the rotator cuff were included in the study. Determined at 2 weeks post-operation, patients who were incapable of passive forward elevation greater than $90^{\circ}$ were allotted to the early exercise group (group I: 79 patients; 42 males, 37 females), whilst those capable were allotted to the delayed exercise group (group II: 24 patients; 14 males, 10 females). The group I started passive exercise, i.e. stretching, within 2 weeks of operation, whilst group II started within 6 weeks. The results were compared on average 15.8 months (11-49 months) post-operation using the passive range of motion, the Visual Analog Scale (VAS) pain score, and the University of California at Los Angeles (UCLA) and Constant scores. Stiffness was defined as passive forward elevation or external rotation of less than $30^{\circ}C$ compared to the contralateral side. Follow-up magnetic resonance imaging (MRI) was carried out on average 1 year post-operation and the rate of retear was compared with Sugaya's criteria. Results: There were no differences between the two groups in gender, age, smoking, presence of diabetes, arm dominance, period of tear unattended, pre-operative range of motion, shape and size of tear, degree of tendon retraction, and tendon quality. There were no significant differences in clinical outcomes. Whilst stiffness was more frequent in group II (p-value 0.03), retear was more frequent in group I (p-value 0.028) according to the MRI follow-up. Conclusions: During rehabilitation after the arthroscopic repair of the rotator cuff, the delay of passive exercise seems to decrease the rate of retear but increase the risk of stiffness.

A Study on the Physical Behavior and the Applicability of Rock Anchorage System of a Suspension Bridge in Domestic Island (현수교 지중정착식 앵커리지의 거동특성과 국내 도서지역에서의 적용성에 대한 연구)

  • Yang, Euikyu;Choi, Youngseok;Choi, Kyungseob;Kim, Daehak;Jeon, Yongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.33-48
    • /
    • 2021
  • The rock anchorage of a suspension bridge is an outstanding anchorage type from environmental and economical perspective, although it should be applied when the bearing foundation is fresh enough to resist large cable loads. In practice, geotechnical engineers have encountered difficulties in designing the anchorage structure due to the fact that the physical behaviors of rocks against cable loads have not yet been fully proved and its design method was not established yet. In this study, model tests and numerical studies were performed to evaluate the behavior of the rock anchorage system planned under hard rock layers in domestic islands, and results suggest that the shape of asymmetric rock wedges can resist the tension loads with self weight and shear resistance. Additionally, real scale trial tests were carried out to verify the accuracy of an inclined drilling penetrating hard rock layers to install tendon to the bearing plate.

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

Comparison of behavior of high-rise residential buildings with and without post-tensioned transfer plate system

  • Byeonguk Ahn;Fahimeh Yavartanoo;Jang-Keun Yoon;Su-Min Kang;Seungjun Kim;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • Shear wall is commonly used as a lateral force resisting system of concrete mid-rise and high-rise buildings, but it brings challenges in providing relatively large space throughout the building height. For this reason, the structure system where the upper structure with bearing, non-bearing and/or shear walls that sits on top of a transfer plate system supported by widely spaced columns at the lower stories is preferred in some regions, particularly in low to moderate seismic regions in Asia. A thick reinforced concrete (RC) plate has often been used as a transfer system, along with RC transfer girders; however, the RC plate becomes very thick for tall buildings. Applying the post-tensioning (PT) technique to RC plates can effectively reduce the thickness and reinforcement as an economical design method. Currently, a simplified model is used for numerical modeling of PT transfer plate, which does not consider the interaction of the plate and the upper structure. To observe the actual behavior of PT transfer plate under seismic loads, it is necessary to model whole parts of the structure and tendons to precisely include the interaction and the secondary effect of PT tendons in the results. This research evaluated the seismic behavior of shear wall-type residential buildings with PT transfer plates for the condition that PT tendons are included or excluded in the modeling. Three-dimensional finite element models were developed, which includes prestressing tendon elements, and response spectrum analyses were carried out to evaluate seismic forces. Two buildings with flat-shape and L-shape plans were considered, and design forces of shear walls and transfer columns for a system with and without PT tendons were compared. The results showed that, in some cases, excluding PT tendons from the model leads to an unrealistic estimation of the demands for shear walls sit on transfer plate and transfer columns due to excluding the secondary effect of PT tendons. Based on the results, generally, the secondary effect reduces shear force demand and axial-flexural demands of transfer columns but increases the shear force demand of shear walls. The results of this study suggested that, in addition to the effect of PT on the resistance of transfer plate, it is necessary to include PT tendons in the modeling to consider its effect on force demand.

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation (덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용)

  • Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.17-24
    • /
    • 2023
  • A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.