• Title/Summary/Keyword: tendon force

Search Result 210, Processing Time 0.024 seconds

Evaluation of Ultimate Tendon Stress in Prestressed Concrete Members with External Unbonded Tendons (외부 비부착 강선을 가진 부재의 극한 강선응력 평가)

  • 오병환;유성원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.381-386
    • /
    • 1999
  • The member with external unbonded tendon has two remarkable characteristics, i.e., eccentricity variation and slip by friction force at deviators, compared with internal bonded or unbonded member. An efficient numerical procedure for the nonlinear analysis of prestressed concrete beam with external unbonded tendon considering two remarkable characteristics is formulated and corresponding computer code is developed. On the basis of statistical process of parametric study results, strain compatibility method, eccentricity variation predictor and tendon stress predictor at ultimate state are proposed and verified with test results and existing Codes, which can evaluate flexural behavior at ultimate state. Finally, the proposed procedure and predictors can be efficiently used for the realistic and accurate analysis of prestressed concrete members with external unbonded tendons.

  • PDF

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.

Effects of Diamond Taping Applied Around the Lateral Elbow on Common Extensor Tendon Thickness, Grip Strength and Wrist Extension Force in Healthy Subjects (팔꿉관절 가쪽 부위에 적용한 다이아몬드 테이핑이 정상인의 공동폄근 힘줄의 두께와 악력, 손목 폄력에 미치는 영향)

  • Park, So-hyun;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.27 no.3
    • /
    • pp.163-170
    • /
    • 2020
  • Background: The characteristics of lateral epicondylitis (LE) are muscle strength weakness and increased common extensor tendon (CET) thickness. Ultrasonography has recently been used to evaluate tendinopathy. Diamond taping (DT) is commonly used to manage patients with LE. However, no previous studies have investigated the effects of DT on CET thickness. Objects: The aim of this study was to investigate the effects of DT applied around the lateral elbow on CET thickness, grip strength, and wrist extension force in healthy subjects. Methods: The subjects were 26 adults (13 male) in their twenties. First, the CET thickness was measured at rest. The CET thickness was measured by using ultrasonography at two points. The subjects were then instructed to perform maximal grip activities or maximal wrist extension activities before and after DT around the lateral elbow. The DT technique was applied using non-elastic tape. While the subjects performed maximal grip activities, the investigator measured the maximum grip strength (MGS) and CET thickness. Likewise, while the subjects performed maximal wrist extension activities, the investigator measured the maximum wrist extension force (MWEF) and CET thickness. Results: The MGS showed a statistically significant improvement after DT taping application in men (p < 0.05). The MWEF showed a statistically significant improvement after DT application in male (p < 0.01) and female (p < 0.05). When performing the activities, the CET thickness increased compared to that at rest. However, CET thickness didn't show a statistically significant improvement before and after DT. Conclusion: This study shows that DT applied around the lateral elbow is effective in improving MGS and MWEF. However, it does not affect CET thickness.

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Stand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Jae-Min;Kim, Hyun-Woo;Kim, Young-Sang;Kim, Jin-Won;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2008
  • This study proposes a novel method for in service evaluation of tension force of a prestressed 7-wire strand which is frequently employed for retrofitting bridge superstructure. The smart strand is made by replacing the straight king wire of the strand with an instrumented steel tube in which the FBG sensor is embedded. Since the strain of the smart strand can easily be measured using the sensor, it is possible to monitor tension force of the strand during the service. For the sake of demonstrating effectiveness of the proposed strand, we came up with a 7.0m long prototype with 2 FBG sensors, and it is applied as an external tendon to a 6.4m long and 0.6 high RC T-shaped beam. A loading-unloading test has been carried out, and estimated tension forces using the smart strand are compared with measured forces by load cell. The comparison showed that the proposed smart tendon is useful and accurate for monitering tension force of the prestressed tendon.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe (보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석)

  • Choi, Kyoo-Jeong;Kwon, Hee-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.

Feasibility Study of Estimating Prestress Force of Grouted Tendons (종진동특성을 이용한 부착식 텐던의 긴장력 추정 타당성 연구)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.103-111
    • /
    • 2010
  • A feasibility study for nondestructively estimating prestress force of a grouted tendon using axial vibrations has been investigated. Total eight prestressed concrete beams with different stress levels have been specially designed and constructed for this investigation. The various axial vibration tests have been conducted in order to extract the dynamic characteristics of the prestressed concrete beams. It turns out that the axial frequency, elastic wave velocity and elastic modulus are nonlinearly increased as the prestress force level increases. It seems that the axial vibration characteristics of the existing grouted tendons are a feasible indicator for the identification of their tensile force.

Construction Sequence Measurement & Analysis for Continuous 8-span Prestressed Concrete(PSC) Girder Bridge (8경간 연속화 프리스트레스 거더교의 시공 계측 및 분석 -서울교 확장교량 적용)

  • 조성웅;이원표;임현태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.985-990
    • /
    • 2001
  • The widened Seoul-Bridge is the first continuous 8-span prestressed concrete(PSC) girder bridge in domain. The construction sequence of the bridge consists of S steps in a large way. The measuring in construction stage includes the determination of the allowable fluctuation value of beam stress in each step and the measurement beam stress during prestessing. The measured tendon prestress force was compared with the design value. When it was compared with the analytic result, the difference between the measured stress and the analytic stress was below allowable error. The friction loss and the anchorage slip loss of the tendon prestress force was lower than the design loss value.

  • PDF