• Title/Summary/Keyword: temporal-spatial variations

Search Result 390, Processing Time 0.02 seconds

Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Deacheong Reservoir (선택취수에 따른 대청호 탁수 조절효과 및 수질영향 분석)

  • Jung, Yong-Rak;Liu, Huan;Kim, Yu-Kyung;Ye, Lyeong;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.601-615
    • /
    • 2007
  • A selective withdrawal method has been widely used to control the quality of water released from a stratified reservoir and to improve downstream ecosystem habitats. Recently, several existing reservoir withdrawal facilities have been modified to accommodate multi-level water intake capabilities in order to adapt the impact of long-term discharge of high turbidity flow. The purpose of this study was to assess the effect of selective withdrawal method on the control of downstream turbidity and its impact on water quality in Daecheong Reservoir. A laterally integrated two-dimensional hydrodynamic and eutrophication model, which was calibrated and validated in the previous studies, was applied to simulate the temporal variations of outflow turbidity with various hypothetical selective withdrawal scenarios. In addition, their impacts on the algal growth as well as water quality constituents were analyzed in three different spatial domains of the reservoir The results showed that the costly selective withdrawal method would provide very limited benefits for downstream turbidity control during two years of consecutive simulations for 2004-2005. In particular, an excessive withdrawal from the epilimnion zone for supplying upper layer clean water resulted in movement of turbidity plume that contained high phosphorus concentrations upward photic zone, and in turn increased algal growth in the lacustrine zone.

A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea (UPLC를 이용한 남해 진주만 식물플랑크톤 군집 변동특성 연구)

  • Lee, Eugene;Son, Moonho;Kim, Jeong Bea;Lee, Won Chan;Jeon, Ga Eun;Lee, Sang Heon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.62-72
    • /
    • 2018
  • In order to provide important information for the efficient management of the identified farm ecosystem in Jinju Bay, we investigated the spatial and temporal distribution of the phytoplankton community using a UPLC pigment analysis and a CHEMTAX program from the timeframe of February 2013 to January 2014. In addition, we measured the available physical and chemical parameters controlling the distribution of the phytoplankton communities. As a result of this comprehensive pigment analysis, it was noted that the Diatoms were the predominant species with an average of 77.1% as noted located in Jinju Bay. It was discovered that during the summer season, the phytoplankton community composition was changed by a reduction of diatoms and noted increases of the Cryptophytes, Prasinophytes, and Dinoflagellates. Especially, it was noted that the Cryptophytes and Prasinophytes were shown with an average of 18.8% and 17.8% in June, respectively. However, it was revealed that the Cryptophytes and Prasinophytes were not shown by a microscopic observation. The phytoplankton community composition was correlated with the temperature and salinity variations as noticed in the Jinju Bay. Therefore, the water temperature and freshwater inputs in the Jinju Bay were important environmental factors for controlling the phytoplankton community composition and the varying Cryptophytes and the noted amounts of Prasinophytes as well.

Depth-dependent Variability of Fish Fauna in the Coastal Waters off Hupo, East Sea (동해 후포 연안 어류상의 수심별 차이)

  • Lee, Chung Il;Jung, Hea Kun;Kwon, Soon Man;Han, Moon Hee;Seol, Kang Su;Park, Joo Myun
    • Korean Journal of Ichthyology
    • /
    • v.30 no.1
    • /
    • pp.36-45
    • /
    • 2018
  • The temporal and depth-related variations in the species composition and abundance of demersal fish assemblage were studied in the coastal waters off Hupo, East Sea. Fish samples were collected seasonally between 2011 and 2017 at two stations of study area using trammel net and bottom gill net. In total, 46 fish species belonging to 17 families were collected during study period, with 36 and 22 species occurring in depths of ~80 m (site A) and ~140 m (site B), respectively. Glyptocephalus stelleri, Cleisthenes pinetorum and Gymnocanthus herzensteini were abundant at shallower site, and Dasycottus setiger at deeper site. The number of species, abundance, biomass and diversity fluctuated with water depth, but not temporally (both seasonally and annually). Analysis of similarity (ANOSIM) revealed that the fish assemblage structures were significantly different with water depth, but not by year or season. Non-metric multidimensional scaling (MDS) ordination plot emphasized visually in spatial difference of fish assemblages, and it was due to differential contributions of dominant species in relation to water depth and temperature.

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

Distribution, Vegetation Structure and Biomass of Submerged Macrophytes in a Small Agricultural Reservoir, Keumpoong Reservoir, Korea (소형 농업 저수지인 금풍저수지에서 침수식물의 분포, 식생구조 및 생물량)

  • Kim, Ki-Hwan;Jin, Seung-Nam;Cho, Hyung-Jin;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.52-61
    • /
    • 2012
  • Distribution, abundance and biomass of submerged macrophytes were assessed using a double-headed rake and an echo-sounder in the Keumpoong Reservoir to investigate the temporal and spatial variations of submerged macrophytes in a small agricultural reservoir located upstream. Slope steepness and water depth in the littoral zone were important controlling factors on flora and vegetation structure of submerged macrophytes. Biodiversity of submerged macrophytes was increased at a gentle slope of the littoral zone. The results of DCA (detrended correspondence analysis) showed that the structure of submerged vegetation depended on the depth of water. Submerged macrophytes were distributed at the maximum water depth of 2.8 m in the Keumpoong Reservoir. The area occupied by the submerged macrophytes was estimated at only 6% of the total reservoir area because of the steep slope of the littoral zone and the large annual water-level fluctuation of 3.5 m. The increase of water level and inflow of turbid water in the rainy season might reduce the biomass of submerged macrophytes in the reservoir. It may be concluded that submerged vegetation in the Keumpoong Reservoir, a small agricultural reservoir located at the upstream, appears to be particularly susceptible to water level fluctuations and slope steepness of the littoral zone.

LOW ATMOSPHERE RECONNECTIONS ASSOCIATED WITH AN ERUPTIVE SOLAR FLARE

  • MOON Y.-J.;CHAE JONGCHUL;CHOE G. S.;WANG HAIMIN;PARK Y. D.;CHENG C. Z.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.41-53
    • /
    • 2004
  • It has been a big mystery what drives filament eruptions and flares. We have studied in detail an X1.8 flare and its associated filament eruption that occurred in NOAA Active Region 9236 on November 24,2000. For this work we have analyzed high temporal (about 1 minute) and spatial (about 1 arcsec) resolution images taken by Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory, Hoc centerline and blue wing ($-0.6{\AA}$) images from Big Bear Solar Observatory, and 1600 ${\AA}$ UV images by the Transition Region and Corona Explorer (TRACE). We have found that there were several transient brightenings seen in H$\alpha$ and, more noticeably in TRACE 1600 ${\AA}$ images around the preflare phase. A closer look at the UV brightenings in 1600 ${\AA}$ images reveals that they took place near one end of the erupting filament, and are a kind of jets supplying mass into the transient loops seen in 1600 ${\AA}$. These brightenings were also associated with canceling magnetic features (CMFs) as seen in the MDI magnetograms. The flux variations of these CMFs suggest that the flux cancellation may have been driven by the emergence of the new flux. For this event, we have estimated the ejection speeds of the filament ranging from 10 to 160 km $s^{-1}$ for the first twenty minutes. It is noted that the initiation of the filament eruption (as defined by the rise speed less than 20 km $s^{-1}$) coincided with the preflare activity characterized by UV brightenings and CMFs. The speed of the associated LASCO CME can be well extrapolated from the observed filament speed and its direction is consistent with those of the disturbed UV loops associated with the preflare activity. Supposing the H$\alpha$/UV transient brightenings and the canceling magnetic features are due to magnetic reconnect ion in the low atmosphere, our results may be strong observational evidence supporting that the initiation of the filament eruption and the preflare phase of the associated flare may be physically related to low-atmosphere magnetic reconnection.

Climatological Study of 1994's Summer Droughts in Korea (한국에 있어서 1994년 하계한발의 기후학적 연구)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 1996
  • The Korean Peninsula is located on the east coast of monsoon Asia of the midlatitude, where the Pacific polar front moves. As a result variations of spatial and temporal distribution of precipitation occur. A great variation of precipitation during the summer months created frequent droughts and floods. The purpose of this study is to identify distributional characteristics and to analyze synopic characteristics of summer droughts in Korea. The research methods used are ; (1) to identify droughts based on the anomaly of monthly precipitation during summer of 1994. (2) to analyze correlations between drought and weather systems by using the calender of rain days. (3) to compare a synoptic mechanism of summer droughts with that of typical normal summer. The characteristics of summer droughts of 1994 may be summarized as follows ; 1) While most regions were affected by the droughts some regions displayed specific characteristics. The southern part of the Korean Peninsula was severely affected during the month of June. August droughts severely affected east part of the Sobek Mountains, thus showing that the droughts of June and August are highly localized. 2) In the pressure anomaly of surface field. the positive anomaly appears in June around Korean Peninsula, but in July when all parts of the South Korea were under severe droughts, the anomaly changes and becomes negative. 3) Extracyclones occurred less frequently in the summer of 1994. Those that did occur were located in areas far off the Korean Peninsula having little consequences on the drought patterns. 4) The trough of westerly wave at 500hPa height patterns in June is located far from the eastern sea of Korean Peninsula, but in July and August Korean Peninsula belongs to ridge of westerly wave. 5) In June the positive height anomaly at 500hPa surface appears zonally from Siberia to the western Parts of North Pacific Ocean, and in July and August, the strong positive anomaly appears around Korean Peninsula. As a result the zonal index of westerlies at during each month of summer in Korean sector has a large value, which in turn implies that drought will prevails when zonal flow is strong.

  • PDF

Temporal and Spatial Variations of Size-structured Phytoplankton in the Asan Bay (아산만 식물플랑크톤 크기구조의 시.공간적 변동)

  • Hyun Bong-Kil;Sin Yong-Sik;Park Chul;Yang Sung-Ryull;Lee Young-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.7-18
    • /
    • 2006
  • Samples were collected from five stations monthly from October 2003 to September 2004 to investigate seasonal variation of size structure of phytoplankton and relationship between size-fractionated phytoplankton and environmental factors in the Asan Bay. The contribution of large cells (microphytoplankton, $>20\;{\mu}m$) to total concentrations of chlorophyll $\alpha$ was higher than small cells (nanophytoplankton, $3\sim20\;{\mu}m$; picophytoplankton, $<3\;{\mu}m$) during the sampling period. Especially, large cells contributed 80% to the total chlorophyll a from February, 2004 to April 2004 when chlorophyll $\alpha$ concentrations were high. The size structure of phytoplankton shifted from micro-size class to nano-size class and picophytoplankton rapidly increased when phytoplankton biomass decreased in May 2004. Microphytoplankton exhibited a high biomass in the upper region during winter-spring season whereas nano- and picophytoplankton showed two peaks in the middle-lower regions (Station 3,5) during spring and summer. Microphytoplankton are most likely controlled by water temperature and nutrient supply during the cold season whereas nano- and picophytoplankton may be affected by stratification, light exposure during the warm season.

Reference evapotranspiration estimates based on meteorological variables over Korean agro-climatic zones for rice field (남한지역의 논 농업기후지대에 대한 기상자료 기반의 기준 증발산량 추정)

  • Jung, Myung-Pyo;Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung;Choi, Soon-Kun;Lee, Byeong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 2019
  • This study was conducted to estimate annual reference evapotranspiration (ET0) for the agro-climatic zones for rice paddy fields in South Korea between 1980 and 2015. The daily ET0 was estimated by applying the Penman-Monteith method to meteorological data from 61 weather stations provided by Korean Meteorological Administration (KMA). The average of annual ET0 from 1980 to 2015 was 1334.1±33.89 mm. The ET0 was the highest at the Southern Coastal Zone due to their higher air temperature and lower relative humidity. The ET0 had significantly increased with 2.81 mm/yr for the whole zones over 36 years. However, the change rate of it was different among agro-climatic zones. The annual ET0 highly increased in central zones and eastern coastal zones. In terms of correlation coefficient, the temporal change of the annual ET0 was closely related to variations of four meteorological factors (i.e., mean, minimum temperatures, sunshine duration, and relative humidity). The results demonstrated that whole Korean agro-climatic zones have been undergoing a significant change in the annual ET0 for the last 36 years. Understanding the spatial pattern and the long-term variation of the annual ET0 associated with global warming would be useful to improve crop and water resource managements at each agro-climatic zone of South Korea.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula - Expansion of Coastal Waters and Its Effect on Temperature Variations in The South Sea of Korea - (한반도 근해의 해류와 해수 특성 -남해연안수 확장과 수온변화-)

  • NA Jung-Yul;HAN Sang-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.267-279
    • /
    • 1990
  • The temporal and spatial distribution of the coastal cold waters which was formed due to winter colling in the South Sea of Korea was analyzed by IR images from satellite and in situ data from shipboard observations. The coastal waters are known to be consisted of the Yellow Sea Coastal Waters(YSCW) and the South Korean Coastal Waters(SKCW). The former is driven around the Chuja-do and drifted into the Cheju Strait by residual currents, while the latter expands toward offsea by southward wind forcing. The expansion patterns of the SKCW were observed as sinking expansion or drifting expansion such that both were strongly dependent on the surface heat flux conditions. Under the condition of positive heat flux(warmer sea surface) or when the sea surface heat is lost to the atmosphere, the surface water started sinking and eventually expanded toward the open sea causing the cooling of the water column. For the negative heat flux the surface water was just drifted horizontally and expanded seaward and in this case only the surface layer of water was cooled.

  • PDF