DOI QR코드

DOI QR Code

Reference evapotranspiration estimates based on meteorological variables over Korean agro-climatic zones for rice field

남한지역의 논 농업기후지대에 대한 기상자료 기반의 기준 증발산량 추정

  • Jung, Myung-Pyo (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Hur, Jina (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Shim, Kyo-Moon (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kim, Yongseok (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kang, Kee-Kyung (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Choi, Soon-Kun (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Lee, Byeong-Tae (Climate Change & Agroecology Division, National Institute of Agricultural Sciences)
  • 정명표 (국립농업과학원 기후변화생태과) ;
  • 허지나 (국립농업과학원 기후변화생태과) ;
  • 심교문 (국립농업과학원 기후변화생태과) ;
  • 김용석 (국립농업과학원 기후변화생태과) ;
  • 강기경 (국립농업과학원 기후변화생태과) ;
  • 최순군 (국립농업과학원 기후변화생태과) ;
  • 이병태 (국립농업과학원 기후변화생태과)
  • Received : 2019.09.24
  • Accepted : 2019.12.20
  • Published : 2019.12.30

Abstract

This study was conducted to estimate annual reference evapotranspiration (ET0) for the agro-climatic zones for rice paddy fields in South Korea between 1980 and 2015. The daily ET0 was estimated by applying the Penman-Monteith method to meteorological data from 61 weather stations provided by Korean Meteorological Administration (KMA). The average of annual ET0 from 1980 to 2015 was 1334.1±33.89 mm. The ET0 was the highest at the Southern Coastal Zone due to their higher air temperature and lower relative humidity. The ET0 had significantly increased with 2.81 mm/yr for the whole zones over 36 years. However, the change rate of it was different among agro-climatic zones. The annual ET0 highly increased in central zones and eastern coastal zones. In terms of correlation coefficient, the temporal change of the annual ET0 was closely related to variations of four meteorological factors (i.e., mean, minimum temperatures, sunshine duration, and relative humidity). The results demonstrated that whole Korean agro-climatic zones have been undergoing a significant change in the annual ET0 for the last 36 years. Understanding the spatial pattern and the long-term variation of the annual ET0 associated with global warming would be useful to improve crop and water resource managements at each agro-climatic zone of South Korea.

본 연구는 1980년부터 2015년까지 논 농업기후지대에 대한 연 기준 증발산량(annual reference evapotranspiration, ET0)을 추정하고 분석하였다. 기상청에서 수집한 61개 지점의 기상자료에 Penman-Monteith 방법을 적용하여 일별 기준 증발산량을 계산하였다. 1980년부터 2015년 동안의 연 기준 증발산량은 평균 1334.1±33.89 mm 이였으며, 해안 지대에서 가장 높게 나타났다. 기준 증발산량은 전체 지대에 대해서 약 2.81 mm/yr의 추세로 증가하였다. 하지만 변화율은 농업기후지대별로 다르게 나타났다. 특히 중부지대와 동부 해안 지대에서 연 기준 증발산량은 가장 크게 증가하였다. 상관계수 분석에 의하면, 연 기준 증발산량의 연 변화는 네가지 기후 요소(평균, 최저기온, 일조시간, 상대습도)와 가장 크게 연관이 있었다. 이 연구는 36년 동안 전체 한국 농업지대에서 연 기준증발산량의 변화를 겪고 있다는 것을 보여주고 있다. 온난화와 관련된 장기간의 연기준 온도의 변화와 공간적 패턴을 이해하는 것은 각 농업기후지대별 수자원 및 작물 관리를 효율적으로 할 수 있도록 도와줄 것으로 생각된다.

Keywords

References

  1. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome, Irrig. Drain. Paper 56, 2-15.
  2. Araya, A., S. D. Keesstra, and L. Stroosnijder, 2010: A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agricultural Forest Meteorology 150(7-8), 1057-1064. https://doi.org/10.1016/j.agrformet.2010.04.003
  3. Baldocchi, D., S. Knox, I. Dronova, J. Verfaillie, P. Oikawa, C. Sturtevant, J. H. Matthes, M. Detto, 2016: The impact of expanding flooded land area on the annual evaporation of rice. Agricultural and Forest Meteorology 223, 181-193. https://doi.org/10.1016/j.agrformet.2016.04.001
  4. Caldiz, D. O., A. J. Haverkort, and P. C. Struik, 2002: Analysis of a complex crop production system in interdependent agro-ecological zones: a methodological approach for potatoes in Argentina. Agricultural Systems 73(3), 297-311. https://doi.org/10.1016/S0308-521X(01)00085-3
  5. Choi, D. H., and S. H. Yun, 1989: Agroclimatic zone and characters of the area subject to climatic disaster in Korea. Korean Journal Crop Science 34, 13-33. (in Korean with English abstract)
  6. Fischer, G., M. Shah, and F. N. Tubiello, H. van Velhuizen, 2005: Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philosophical Transactions Royal Society B 360, 2067-2083. https://doi.org/10.1098/rstb.2005.1744
  7. Gallup, J. L., and J. D. Sachs, 2000: Agriculture, climate, and technology: why are the tropics falling behind? American Journal of Agricultural Economics 82, 731-737. https://doi.org/10.1111/0002-9092.00071
  8. Gao, G., D. Chen, G. Ren, Y. Chen, and Y.M. Liao, 2006: Spatial and temporal variations and controlling factors of potential evapotranspiration in China:1956-2000. Journal of Geographical Sciences 16 (1), 3-12. https://doi.org/10.1007/s11442-006-0101-7
  9. Gao, Z., J. He, K. Dong, and X. Li, 2017: Trends in reference evapotranspiration and their causative factors in the West Liao River basin, China. Agricultural Forest Meteorology 232, 106-117. https://doi.org/10.1016/j.agrformet.2016.08.006
  10. Geerts, S., D. Raes, M. Garcia, C. Del Castillo, and W. Buytaert, 2006: Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: a case study for quinoa. Agricultural Forest Meteorology 139, 399-412. https://doi.org/10.1016/j.agrformet.2006.08.018
  11. Huo, Z., X. Dai, S. Feng, S. Kang, and G. Huang, 2013: Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology 492, 24-34. https://doi.org/10.1016/j.jhydrol.2013.04.011
  12. Ikawa, H., K. Ono, M. Mano, and K. Kobayashi, 2017: Evapotranspiration in a rice paddy field over 13 crop years. Journal of Agricultural Meteorology 73(3), 109-118. https://doi.org/10.2480/agrmet.D-16-00011
  13. Irmak, S., I. Kabenge, K. E. Skaggs, and D. Mutiibwa, 2012: Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, Central Nebraska-USA. Journal of Hydrology 420-421, 228-244. https://doi.org/10.1016/j.jhydrol.2011.12.006
  14. Jhajharia, D., Y. Dinpashoh, E. Kahya, V. P. Singh, and A. Fakheri-Fard, 2012: Trends in reference evapotranspiration in the humid region of northeast India. Hydrological Processes 26, 421-435. https://doi.org/10.1002/hyp.8140
  15. Jhajharia, D., Y. Dinpashoh, E. Kahya, R. R. Choudhary, and V. P. Singh, 2014: Trends in temperature over Godavari River basin in Southern Peninsular India. International Journal of Climatology 34, 1369-1384. https://doi.org/10.1002/joc.3761
  16. Jung, M.-P., K. M. Shim, Y. Kim, S. C. Kim, and K. H. So, 2014: Changing trends of climatic variables of agro-climatic zones of rice in South Korea. Climate Change Research 5(1), 13-19. (in Korean with English abstract)
  17. Kendall, M. G., 1948: Rank correlation methods. Oxford, England, Griffin.
  18. Komatsu, H., T. Kume, and K. Otsuki, 2008: The effect of converting a native broad leaved forest to a coniferous plantation forest on annual water yield: a paired-catchment study in northern Japan. Forest Ecology and Management 255(3-4), 880-886. https://doi.org/10.1016/j.foreco.2007.10.010
  19. Liu, Q., Z. Yang, B. Cui, and T. Sun, 2010: The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrological Process 24(15), 2171-2181. https://doi.org/10.1002/hyp.7649
  20. Liu, C., D. Zhang, X. Liu, and C. Zhao, 2012: Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960-2007). Journal of Geographical Sciences 22(1), 3-14. https://doi.org/10.1007/s11442-012-0907-4
  21. Liu, T., L. Li, J. Lai, C. Liu, and W. Zhuang, 2016: Reference evapotranspiration change and its sensitivity to climate variables in southwest China. Theoretical and Applied Climatology 125, 499-508. https://doi.org/10.1007/s00704-015-1526-7
  22. Mann, H. B., 1945: Nonparametric tests against trend. Econometrica 13, 245-259. https://doi.org/10.2307/1907187
  23. Nabedzki, L., B. Bak, and K. Smarzynska, 2014: Spatio-temporal variability and trends of Penman-Monteith reference evapotranspiration (FAO-56) in 1971-2010 under climatic conditions of Poland. Polish Journal of Environmental Studies 23, 2083-2091.
  24. Palumbo, A. D., D. Vitale, P. Campi, and M. Mastrorilli, 2011: Time trend in reference evapotranspiration: analysis of a long series of agrometeorological measurements in Southern Italy. Irrigation Drainage System 25(4), 395-411. https://doi.org/10.1007/s10795-012-9132-7
  25. Sabziparvar, A. A., H. Tabari, A. Aeini, and M. Ghafouri, 2010: Evaluation of class a pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climates. Water Resources Management 24(5), 909-920. https://doi.org/10.1007/s11269-009-9478-2
  26. Seppelt, R., 2000: Regionalised optimum control problems for agroecosystem management. Ecological Modelling. 131, 121-132. https://doi.org/10.1016/S0304-3800(00)00270-2
  27. Shim, K. M., Y. Kim, M.-P. Jung, S. C. Kim, S. H. Min, and K. H. So, 2013: Agro-Climatic zonal characteristics of the frequency of abnormal air temperature occurrence in South Korea. Climate Change Research 4, 189-199.
  28. Thomas, A., 2000: Spatial and temporal characteristics of potential evapotranspiration trends over China. A Journal of the Royal Meteorological Society 20(4), 381-396.
  29. Tabari, H., A. Aeini, P. H. Talaee, and B. S. Some'e, 2012: Spatial distribution and temporal variation of reference evapotranspiration in arid and semiarid regions of Iran. Hydrological Processes 26, 500-512. https://doi.org/10.1002/hyp.8146
  30. Wang, S., and Q. J. Wang, 2012: Analysis of variation of climate and potential evapotranspiration and its influencing factors in the Loess area in last 50 years. Agricultural Research Arid Area 30(1), 270-278. https://doi.org/10.3969/j.issn.1000-7601.2012.01.045
  31. Williams, C. L., M. Liebman, J. W. Edwards, D. E. James, J. W. Singer, R. Arritt, and D. Herzmann, 2008: Patterns of regional yield stability in association with regional environmental characteristics. Crop Science 48, 1545-1559. https://doi.org/10.2135/cropsci2006.12.0837
  32. Yoshimoto, M., M. Fukuoka, T. Hasegawa, and M. Utsumi, 2011: Integrated micrometeorology model for panicle and canopy temperature (IM2PACT) for rice heat stress studies under climate change. Journal of Agricultural Meteorology 67, 233-247. https://doi.org/10.2480/agrmet.67.4.8
  33. Zuo, H. C., D. L. Li, Y. Q. Hu, Y. Bao, and S. H. Lv, 2005: Relationship of the climate change and pan evaporation in the recent 40 years in China. Chinese Science Bulletin 50(11), 1125-1130. https://doi.org/10.1360/csb2005-50-11-1125